|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Каждая из девяти прямых разбивает квадрат на два четырёхугольника, площади которых относятся как Известно, что сумма цифр натурального числа N равна 100, а сумма цифр числа 5N равна 50. Докажите, что N чётно. В треугольнике ABC ∠A = 60°. Серединный перпендикуляр к стороне AB пересекает прямую AC в точке N. Серединный перпендикуляр к стороне AC пересекает прямую AB в точке M. Докажите, что CB = MN. |
Страница: 1 2 >> [Всего задач: 6]
Предположим, что имеется набор функций f1(x), ..., fn(x), определённых на отрезке [a, b]. Докажите неравенство:
Докажите неравенство:
Выведите из неравенства задачи 61401 а) неравенство Коши-Буняковского: б) неравенство между средним арифметическим и средним
квадратичным: в) неравенство между средним арифметическим и средним
гармоническим:
Докажите неравенство:
Используя результат задачи 61403, докажите неравенства:
в)
Страница: 1 2 >> [Всего задач: 6] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|