ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Интернет-ресурсы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Дана плоская замкнутая ломаная периметра 1. Доказать, что можно начертить круг
радиусом
Сумма нескольких не обязательно различных положительных чисел не превосходила 100. Каждое из них заменили на новое следующим образом: сначала прологарифмировали по основанию 10, затем округлили стандартным образом до ближайшего целого числа и, наконец, возвели 10 в найденную целую степень. Могло ли оказаться так, что сумма новых чисел превышает 300? |
Страница: << 137 138 139 140 141 142 143 >> [Всего задач: 7526]
Трапеция разбита диагоналями на четыре треугольника. Докажите, что треугольники, прилежащие к боковым сторонам, равновелики.
Докажите, что прямая, проходящая через середины оснований трапеции, разбивает её на две равновеликие части.
Пусть ABCD – выпуклый четырехугольник. Докажите, что AB + CD < AC + BD.
В равнобедренном треугольнике ABC на продолжении основания BC за точку C взята точка D. Докажите, что угол ABC больше угла ADC.
Докажите, что любая хорда окружности не больше диаметра и равна ему только тогда, когда сама является диаметром.
Страница: << 137 138 139 140 141 142 143 >> [Всего задач: 7526]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке