|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Главы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Найти такие отличные от нуля неравные между собой целые числа a, b, c, чтобы выражение x(x – a)(x – b)(x – c) + 1 разлагалось в произведение двух многочленов (ненулевой степени) с целыми коэффициентами. На сторонах правильного девятиугольника $ABCDEFGHI$ во внешнюю сторону построили треугольники $XAB$, $YBC$, $ZCD$ и $TDE$. Известно, что углы $X$, $Y$, $Z$, $T$ этих треугольников равны $20^{\circ}$ каждый, а среди углов $XAB$, $YBC$, $ZCD$ и $TDE$ каждый следующий на $20^{\circ}$ больше предыдущего. Докажите, что точки $X$, $Y$, $Z$, $T$ лежат на одной окружности. |
Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 559]
Докажите, что число 30239 + 23930 составное.
Пусть p – простое число. Докажите, что (a + b)p ≡ ap + bp (mod p) для любых целых a и b.
Сумма трёх чисел a, b и c делится на 30. Докажите, что a5 + b5 + c5 также делится на 30.
Пусть p и q – различные простые числа. Докажите, что б)
Пусть p – простое число, и a не делится на p. Докажите, что найдется натуральное число b, для которого ab ≡ 1 (mod p).
Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 559] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|