Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

На плоскости расположено N точек. Отметим середины всевозможных отрезков с концами в этих точках. Какое наименьшее число отмеченных точек может получиться?

Вниз   Решение


Предлагается построить N точек на плоскости так, чтобы все расстояния между ними равнялись заранее заданным числам: для любых двух точек Mi и Mj, где i и j любые числа от 1 до N.

Можно ли провести построение, если расстояния rij заданы так, что всякие 5 из N точек построить можно?

б) Достаточно ли требовать, чтобы можно было построить всякие 4 из N точек?

в) Что изменится, если строить точки не на плоскости, а в пространстве? Каково тогда наименьшее k, для которого возможность построения любых k из данных N точек обеспечивает возможность построения и всех N> точек?

ВверхВниз   Решение


Автор: Фольклор

Петя ехал из Петрова в Николаево, а Коля – наоборот. Они встретились, когда Петя проехал 10 км и еще четверть оставшегося ему до Николаева пути, а Коля проехал 20 км и треть оставшегося ему до Петрова пути. Какое расстояние между Петрово и Николаево?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 73871  (#20.027)

Темы:   [ Ортогональная (прямоугольная) проекция ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Произвольные многоугольники ]
[ Системы отрезков, прямых и окружностей ]
Сложность: 4+
Классы: 8,9,10

Автор: Фомин С.В.

На плоскости дано конечное множество многоугольников, каждые два из которых имеют общую точку. Докажите, что существует прямая, которая имеет общую точку с каждым из этих многоугольников.
Прислать комментарий     Решение


Задача 58075  (#20.028)

Тема:   [ Принцип крайнего (прочее) ]
Сложность: 3
Классы: 8,9

Можно ли на плоскости расположить 1000 отрезков так, чтобы каждый отрезок обоими концами упирался строго внутрь других отрезков?
Прислать комментарий     Решение


Задача 58076  (#20.029)

Тема:   [ Наименьший или наибольший угол ]
Сложность: 4
Классы: 8,9

На плоскости даны четыре точки, не лежащие на одной прямой. Докажите, что хотя бы один из треугольников с вершинами в этих точках не является остроугольным.
Прислать комментарий     Решение


Задача 58077  (#20.030)

Тема:   [ Принцип крайнего (прочее) ]
Сложность: 4
Классы: 8,9

На плоскости дано бесконечное множество прямоугольников, вершины каждого из которых расположены в точках с координатами (0, 0), (0, m), (n, 0), (n, m), где n и m — целые положительные числа (свои для каждого прямоугольника). Докажите, что из этих прямоугольников можно выбрать два так, чтобы один содержался в другом.
Прислать комментарий     Решение


Задача 58078  (#20.030B)

Темы:   [ Принцип крайнего (прочее) ]
[ Теорема Хелли ]
Сложность: 5
Классы: 8,9,10

На плоскости дано n точек, причем любые три из них можно накрыть кругом радиуса 1. Докажите, что тогда все n точек можно накрыть кругом радиуса 1.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .