Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Можно ли доску размером 5×5 заполнить доминошками размером 1×2?

Вниз   Решение


Братья Петя и Вася решили снять смешной ролик и выложить его в интернет. Сначала они сняли, как каждый из них идёт из дома в школу — Вася шёл 8 минут, а Петя шёл 5 минут. Потом пришли домой и сели за компьютер монтировать видео: они запустили одновременно Васино видео с начала и Петино видео с конца (в обратном направлении); в момент, когда на обоих роликах братья оказались в одной и той же точке пути, они склеили Петино видео с Васиным. Получился ролик, на котором Вася идёт из дома в школу, а потом в какой-то момент вдруг превращается в Петю и идёт домой задом наперёд. А какой длительности получился ролик?

ВверхВниз   Решение


Разложите на простые множители числа 111, 1111, 11111, 111111, 1111111.

ВверхВниз   Решение


Илья всегда говорит правду, но когда ему задали дважды один и тот же вопрос, он дал на него разные ответы. Какой бы это мог быть вопрос?

ВверхВниз   Решение


В выпуклом четырёхугольнике ABCD диагонали пересекаются в точке O. Известно, что площади треугольников AOB и COD равны.
Докажите, что ABCD – трапеция или параллелограмм.

ВверхВниз   Решение


Найдите значение дроби В*А*Р*Е*Н*Ь*Е / К*А*Р*Л*С*О*Н, где разные буквы – это разные цифры, а между буквами стоит знак умножения.

ВверхВниз   Решение


Найти все равнобочные трапеции, которые разбиваются диагональю на два равнобедренных треугольника.

ВверхВниз   Решение


На плоскости дан угол, образованный двумя лучами a и b, и некоторая точка M.
Провести через точку M прямую c так, чтобы треугольник, образованный прямыми a, b и c, имел периметр данной величины.

ВверхВниз   Решение


а) Дан осесимметричный выпуклый 101-угольник. Докажите, что ось симметрии проходит через одну из его вершин.
б) Что можно сказать в случае десятиугольника?

ВверхВниз   Решение


Обозначим через S сумму следующего ряда:

S = 1 - 1 + 1 - 1 + 1 -... (12.1)

Преобразовав равенство (12.1 ), можно получить уравнение, из которого находится S:

S = 1 - (1 - 1 + 1 - 1 +...) = 1 - S $\displaystyle \Rightarrow$ S = $\displaystyle {\textstyle\frac{1}{2}}$.

Сумму S можно также найти объединяя слагаемые ряда (12.1 ) в пары:

S = (1 - 1) + (1 - 1) +...= 0 + 0 +...= 0;
S = 1 - (1 - 1) - (1 - 1) -...= 1 - 0 - 0 -...= 1.

Наконец, переставив местами соседние слагаемые, получаем еще одно значение S:

S = - 1 + 1 - 1 + 1 - 1 +...= - 1 + (1 - 1) + (1 - 1) +...= - 1.

Итак, действуя четырьмя разными способами, мы нашли четыре значения суммы S:

S = $\displaystyle {\textstyle\frac{1}{2}}$ = 0 = 1 = - 1.

Какое же значение имеет сумма S в действительности?

ВверхВниз   Решение


У каждого марсианина три руки. Могут ли семь марсиан взяться за руки?

ВверхВниз   Решение


Докажите, что произведение любых трёх последовательных натуральных чисел делится на 6.

ВверхВниз   Решение


Найдите геометрическое место точек M, лежащих внутри правильного треугольника ABC, для которых MA2 = MB2 + MC2.

ВверхВниз   Решение


Докажите, что для любого натурального n в десятичной записи чисел 2002n и  2002n + 2n  одинаковое число цифр.

ВверхВниз   Решение


Существуют 1000 последовательных натуральных чисел, среди которых нет ни одного простого числа (например,  1001! + 2,  1001! + 3, ...,   1001! + 1001).
А существуют ли 1000 последовательных натуральных чисел, среди которых ровно пять простых чисел?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]      



Задача 116884

Темы:   [ Биссектриса угла ]
[ Угол между касательной и хордой ]
[ Медиана, проведенная к гипотенузе ]
[ Окружность Аполлония ]
Сложность: 3
Классы: 10,11

Через вершину А остроугольного треугольника АВС проведены касательная АК к его описанной окружности, а также биссектрисы АN и AM внутреннего и внешнего углов при вершине А (точки М, K и N лежат на прямой ВС). Докажите, что  MK = KN.

Прислать комментарий     Решение

Задача 98271

Темы:   [ Теория алгоритмов (прочее) ]
[ Плоскость, разрезанная прямыми ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Оценка + пример ]
Сложность: 3+
Классы: 6,7,8

На плоскости расположен квадрат и невидимыми чернилами нанесена точка P. Человек в специальных очках видит точку. Если провести прямую, то он отвечает на вопрос, по какую сторону от неё лежит P (если P лежит на прямой, то он говорит, что P лежит на прямой).
Какое наименьшее число таких вопросов необходимо задать, чтобы узнать, лежит ли точка P внутри квадрата?

Прислать комментарий     Решение

Задача 98272

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ НОД и НОК. Взаимная простота ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 7,8,9

Существуют ли 100 таких натуральных чисел, что их сумма равна их наименьшему общему кратному?
(Среди чисел могут быть равные.)

Прислать комментарий     Решение

Задача 98276

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Рекуррентные соотношения (прочее) ]
[ Тождественные преобразования ]
Сложность: 3+
Классы: 7,8,9

Последовательность определяется так: первые её члены – 1, 2, 3, 4, 5. Далее каждый следующий (начиная с 6-го) равен произведению всех предыдущих членов минус 1. Докажите, что сумма квадратов первых 70 членов последовательности равна их произведению.

Прислать комментарий     Решение

Задача 98282

Темы:   [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 6,7,8

а) Существуют ли четыре таких различных натуральных числа, что сумма каждых трёх из них есть простое число?
б) Существуют ли пять таких различных натуральных чисел, что сумма каждых трёх из них есть простое число?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .