ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Каждую клетку квадратной таблицы 2×2 можно покрасить в чёрный или белый цвет. Сколько существует различных раскрасок этой таблицы? |
Страница: 1 2 >> [Всего задач: 6]
В строку записано 2020 натуральных чисел. Каждое из них, начиная с третьего, делится и на предыдущее, и на сумму двух предыдущих.
На высотах AA0, BB0, CC0 остроугольного неравностороннего треугольника ABC отметили соответственно точки A1,B1,C1 так, что AA1=BB1=CC1=R, где R – радиус описанной окружности треугольника ABC. Докажите, что центр описанной окружности треугольника A1B1C1 совпадает с центром вписанной окружности треугольника ABC.
На клетчатой плоскости отметили 40 клеток. Всегда ли найдётся клетчатый прямоугольник, содержащий ровно 20 отмеченных клеток?
Первая производная бесконечной последовательности a1,a2, ... – это последовательность a′n=an+1−an (где n = 1, 2, ...), а её k-я производная – это первая производная её (k–1)-й производной
На сфере радиуса 1 дан треугольник, стороны которого – дуги трёх различных окружностей радиуса 1 с центром в центре сферы, имеющие длины меньше π, а площадь равна четверти площади сферы. Докажите, что четырьмя копиями такого треугольника можно покрыть всю сферу.
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке