|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Варианты:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Определите, на какую наибольшую натуральную степень числа 2007 делится 2007! Решить в целых числах уравнение xy = x + y + 3. Длины оснований трапеции равны m см и n см (m и n – натуральные числа, m ≠ n). Докажите, что трапецию можно разрезать на равные треугольники. |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]
а) допустимый четырехугольник, который после n<5 операций становится равным исходному; б) такое число n0, что любой допустимый четырехугольник после n=n0 операций становится равным исходному?
Разрежьте круг на несколько равных частей так, чтобы центр круга не лежал на границе хотя бы одной из них.
Конструктор состоит из набора прямоугольных параллелепипедов. Все их можно поместить в одну коробку, также имеющую форму прямоугольного параллелепипеда. В бракованном наборе одно из измерений каждого параллелепипеда оказалось меньше стандартного. Всегда ли у коробки, в которую укладывается набор, тоже можно уменьшить одно из измерений (параллелепипеды укладываются в коробку так, что их рёбра параллельны рёбрам коробки)?
Страница: << 1 2 3 4 5 6 >> [Всего задач: 26] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|