Страница:
<< 2 3 4 5 6 7
8 >> [Всего задач: 37]
|
|
Сложность: 4 Классы: 7,8,9
|
Через противоположные вершины
A и
C четырёхугольника
ABCD проведена
окружность, пересекающая стороны
AB,
BC,
CD и
AD соответственно в
точках
M,
N,
P и
Q. Известно, что
BM = BN = DP = DQ = R , где
R — радиус данной окружности.
Доказать, что в таком случае сумма углов
B и
D данного четырёхугольника
равна
120
o.
|
|
Сложность: 4 Классы: 9,10,11
|
Дана система из
n точек на плоскости, причём известно, что для любых двух
точек данной системы можно указать движение плоскости, при котором первая точка
перейдёт во вторую, а система перейдёт сама в себя. Доказать, что все точки
такой системы лежат на одной окружности.
|
|
Сложность: 4 Классы: 9,10,11
|
В треугольнике ABC сторона BC равна полусумме двух других сторон. Через точку A и середины B', C' сторон AB и AC проведена окружность Ω и к ней из центра тяжести треугольника проведены касательные. Доказать, что одна из точек касания является центром I вписанной окружности треугольника ABC.
|
|
Сложность: 4+ Классы: 9,10
|
В треугольнике
ABC сторона
BC равна полусумме двух других сторон. Доказать,
что биссектриса угла
A перпендикулярна отрезку, соединяющему центры вписанной
и описанной окружностей треугольника.
|
|
Сложность: 5- Классы: 10,11
|
Дан треугольник
ABC, причём сторона
BC равна полусумме двух других сторон.
Доказать, что в таком треугольнике вершина
A, середины сторон
AB и
AC и
центры вписанной и описанной окружностей лежат на одной окружности (сравните с
задачей 4 для 9 класса).
Страница:
<< 2 3 4 5 6 7
8 >> [Всего задач: 37]