Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 41]
|
|
Сложность: 3 Классы: 10,11
|
Через вершину А остроугольного треугольника АВС проведены касательная АК к его описанной окружности, а также биссектрисы АN и AM внутреннего и внешнего углов при вершине А (точки М, K и N лежат на прямой ВС). Докажите, что MK = KN.
|
|
Сложность: 3+ Классы: 6,7,8
|
На плоскости расположен квадрат и невидимыми чернилами нанесена точка P. Человек в специальных очках видит точку. Если провести прямую, то он отвечает на вопрос, по какую сторону от неё лежит P (если P лежит на прямой, то он говорит, что P лежит на прямой).
Какое наименьшее число таких вопросов необходимо задать, чтобы узнать, лежит ли точка P внутри квадрата?
|
|
Сложность: 3+ Классы: 7,8,9
|
Существуют ли 100 таких натуральных чисел, что их сумма равна их наименьшему
общему кратному?
(Среди чисел могут быть равные.)
|
|
Сложность: 3+ Классы: 7,8,9
|
Последовательность определяется так: первые её члены – 1, 2, 3, 4, 5. Далее каждый следующий (начиная с 6-го) равен произведению всех предыдущих членов
минус 1. Докажите, что сумма квадратов первых 70 членов последовательности равна их произведению.
|
|
Сложность: 3+ Классы: 6,7,8
|
а) Существуют ли четыре таких различных натуральных числа, что
сумма каждых трёх из них есть простое число?
б) Существуют ли пять таких различных натуральных чисел, что сумма
каждых трёх из них есть простое число?
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 41]