|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Опишите все способы покрасить каждое натуральное число в один из трёх цветов так, чтобы выполнялось условие: если числа a, b и c (не обязательно различные) удовлетворяют условию 2000(a + b) = c, то они либо все одного цвета, либо трёх разных цветов. |
Страница: 1 2 >> [Всего задач: 6]
Бумажный треугольник с углами 20°, 20°, 140° разрезается по одной из своих биссектрис на два треугольника, один из которых также разрезается по биссектрисе, и так далее. Может ли после нескольких разрезов получиться треугольник, подобный исходному?
Комментарий. Под средним по величине углом мы понимаем угол, который не больше одного из углов, и не меньше другого. Так, например, мы считаем, что у равностороннего треугольника любой угол - средний по величине.
У Пети всего 28 одноклассников. У каждых двух из 28 различное число друзей в этом классе. Сколько друзей у Пети?
Каждой паре чисел x и y поставлено в соответствие некоторое число x*y. Найдите 1993*1935, если известно, что для любых трёх чисел x, y, z выполнены тождества: x*x = 0 и x*(y*z) = (x*y) + z.
Найдите x1000, если x1 = 4, x2 = 6, и при любом натуральном n ≥ 3 xn – наименьшее составное число, большее 2xn–1 – xn–2.
Страница: 1 2 >> [Всего задач: 6] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|