Страница:
<< 1 2 3
4 5 >> [Всего задач: 24]
Задача
109523
(#93.5.10.3)
|
|
Сложность: 4- Классы: 9,10,11
|
Квадратный трёхчлен f(x) разрешается заменить на один из
трёхчленов или Можно ли с помощью таких операций из квадратного трёхчлена x² + 4x + 3 получить трёхчлен x² + 10x + 9?
Задача
109517
(#93.5.10.4)
|
|
Сложность: 5+ Классы: 9,10,11
|
За круглым столом сидит компания из тридцати человек. Каждый из них либо дурак, либо умный. Всех
сидящих спрашивают: Кто Ваш сосед справа – умный или дурак? В ответ умный говорит правду, а
дурак может сказать как правду, так и ложь. Известно, что количество дураков не превосходит
F .
При каком наибольшем значении
F всегда можно, зная эти ответы, указать на умного человека в этой
компании?
Задача
109525
(#93.5.10.5)
|
|
Сложность: 3 Классы: 7,8,9
|
Целые числа x, y и z таковы, что (x – y)(y – z)(z – x) = x + y + z. Докажите, что число x + y + z делится на 27.
Задача
109518
(#93.5.10.6)
|
|
Сложность: 4 Классы: 8,9,10
|
Верно ли, что любые два прямоугольника равной площади можно расположить на плоскости так, что любая горизонтальная прямая, пересекающая один из них, будет пересекать и второй, причём по отрезку той же длины?
Задача
109519
(#93.5.10.7)
|
|
Сложность: 4 Классы: 8,9,10
|
Квадратная доска разделена сеткой горизонтальных и вертикальных прямых на n² клеток со стороной 1. При каком наибольшем n можно отметить n клеток так, чтобы каждый прямоугольник площади не менее n со сторонами, идущими по линиям сетки, содержал хотя бы одну отмеченную клетку?
Страница:
<< 1 2 3
4 5 >> [Всего задач: 24]