Страница: 1
2 3 4 5 >> [Всего задач: 22]
Задача
109850
(#06.5.9.1)
|
|
Сложность: 4- Классы: 7,8,9,10
|
Дана доска 15×15. Некоторые пары центров соседних по стороне клеток соединили отрезками так, что получилась замкнутая несамопересекающаяся ломаная, симметричная относительно одной из диагоналей доски. Докажите, что длина ломаной не больше 200.
Задача
109851
(#06.5.9.2)
|
|
Сложность: 4 Классы: 8,9,10
|
Докажите, что найдутся четыре таких целых числа a, b, c, d, по модулю
больших 1000000, что 1/a + 1/b + 1/c + 1/d = 1/abcd.
Задача
109852
(#06.5.9.3)
|
|
Сложность: 4 Классы: 8,9,10
|
Петя раскрашивает 2006 точек, расположенных на окружности, в 17 цветов.
Затем Коля проводит хорды с концами в отмеченных точках так, чтобы концы любой хорды были одноцветны и хорды не имели общих точек (в том числе и общих концов).
При этом Коля хочет провести как можно больше хорд, а Петя старается ему помешать.
Какое наибольшее количество хорд заведомо сможет провести Коля?
Задача
109853
(#06.5.9.4)
|
|
Сложность: 4 Классы: 9,10,11
|
Дан треугольник ABC. Окружность ω касается описанной окружности Ω треугольника ABC в точке A, пересекает сторону AB в точке K, а также пересекает сторону BC. Касательная CL к окружности ω такова, что отрезок KL пересекает сторону BC в точке T. Докажите, что отрезок BT равен по длине касательной, проведённой из точки B к ω.
Задача
109854
(#06.5.9.5)
|
|
Сложность: 4+ Классы: 8,9,10
|
Пусть a1, a2, ..., a10 – натуральные числа, a1 < a2 < ... < a10. Пусть bk – наибольший делитель ak, меньший ak. Оказалось, что b1 > b2 > ... > b10.
Докажите, что a10 > 500.
Страница: 1
2 3 4 5 >> [Всего задач: 22]