ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На столе стоят 2004 коробочки, в каждой из которых лежит по одному шарику. Известно, что некоторые из шариков– белые, и их количество четно. Разрешается указать на любые две коробочки и спросить, есть ли в них хотя бы один белый шарик. За какое наименьшее количество вопросов можно гарантированно определить какие-нибудь две коробочки, в которых лежат белые шарики? |
Страница: 1 2 3 4 5 >> [Всего задач: 22]
Дана доска 15×15. Некоторые пары центров соседних по стороне клеток соединили отрезками так, что получилась замкнутая несамопересекающаяся ломаная, симметричная относительно одной из диагоналей доски. Докажите, что длина ломаной не больше 200.
Докажите, что найдутся четыре таких целых числа a, b, c, d, по модулю больших 1000000, что 1/a + 1/b + 1/c + 1/d = 1/abcd.
Петя раскрашивает 2006 точек, расположенных на окружности, в 17 цветов. Затем Коля проводит хорды с концами в отмеченных точках так, чтобы концы любой хорды были одноцветны и хорды не имели общих точек (в том числе и общих концов). При этом Коля хочет провести как можно больше хорд, а Петя старается ему помешать. Какое наибольшее количество хорд заведомо сможет провести Коля?
Дан треугольник ABC. Окружность ω касается описанной окружности Ω треугольника ABC в точке A, пересекает сторону AB в точке K, а также пересекает сторону BC. Касательная CL к окружности ω такова, что отрезок KL пересекает сторону BC в точке T. Докажите, что отрезок BT равен по длине касательной, проведённой из точки B к ω.
Пусть a1, a2, ..., a10 – натуральные числа, a1 < a2 < ... < a10. Пусть bk – наибольший делитель ak, меньший ak. Оказалось, что b1 > b2 > ... > b10.
Страница: 1 2 3 4 5 >> [Всего задач: 22]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке