|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Этапы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Дана последовательность an = 1 + 2n + ... + 5n. Существуют ли пять идущих подряд её членов, кратных 2005? 175 шалтаев стоят дороже, чем 125 болтаев, но дешевле, чем 126 болтаев. Доказать, что на покупку трёх шалтаев и одного болтая не хватит:
Даны координаты двух полей шахматной доски (координаты клетки - это 2 числа от 1 до 8: номер столбца и номер строки) Одно ли цвета эти клетки на шахматной доске? Вывести в выходной файл сообщение YES, если они одного цвета, и NO иначе Пример входного файла: 1 1 2 2 Пример выходного файла YES Пример входного файла: 1 1 1 4 Пример выходного файла NO |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48]
Докажите, что для любых положительных чисел x и y справедливо
неравенство
Можно ли расставить по кругу 1995 различных натуральных чисел так, чтобы для каждых двух соседних чисел отношение большего из них к меньшему было простым числом?
Все стороны и диагонали правильного 12-угольника раскрашиваются в 12 цветов (каждый отрезок – одним цветом).
Найдите все такие простые числа p, что число p² + 11 имеет ровно шесть различных делителей (включая единицу и само число).
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|