Версия для печати
Убрать все задачи
На прямоугольном листе бумаги нарисован круг, внутри которого Миша мысленно выбирает
n точек, а Коля пытается их разгадать. За одну попытку Коля указывает на листе (внутри или вне круга) одну точку, а Миша сообщает Коле расстояние от нее до ближайшей неразгаданной точки. Если оно оказывается нулевым, то после этого указанная точка считается разгаданной. Коля умеет отмечать на листе точки, откладывать расстояния и производить построения циркулем и линейкой. Может ли Коля наверняка разгадать все выбранные точки менее, чем за (
n+1)
2 попыток?

Решение
Для определения эффективной температуры звёзд используют закон Стефана — Больцмана, согласно которому мощность излучения нагретого тела прямо пропорциональна площади его поверхности и четвёртой степени температуры:
P=σ ST4 , где
σ = 5
,7
· 10
-8
— числовой коэффициент, площадь измеряется в квадратных метрах, температура — в градусах Кельвина, а мощность — в ваттах. Известно, что некоторая звезда имеет площадь
S =
· 10
14
м2 , а излучаемая ею мощность
P не менее
0
,57
· 10
15
, определите наименьшую возможную температуру этой звезды.

Решение