ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 116241  (#1)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Комбинаторика (прочее) ]
Сложность: 3+
Классы: 8,9

Семизначный код, состоящий из семи различных цифр, назовем хорошим. Паролем сейфа является хороший код. Известно, что сейф откроется, если введён хороший код и на каком-нибудь месте цифра кода совпала с соответствующей цифрой пароля. Можно ли гарантированно открыть сейф быстрее, чем за семь попыток?

Прислать комментарий     Решение

Задача 116244  (#2)

Темы:   [ Параллельность прямых и плоскостей ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 10,11

В пространстве расположена замкнутая шестизвенная ломаная ABCDEF, противоположные звенья которой параллельны  (AB || DE,  BC || EF  и
CD || FA).  При этом AB не равно DE. Докажите, что все звенья ломаной лежат в одной плоскости.

Прислать комментарий     Решение

Задача 116245  (#3)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 9,10,11

Существуют ли такие натуральные числа a, b, c, d, что  a³ + b³ + c³ + d³ = 100100 ?

Прислать комментарий     Решение

Задача 116246  (#4)

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Площадь многоугольника ]
[ Правильные многоугольники ]
Сложность: 3+
Классы: 10,11

На сторонах правильного 2009-угольника отметили по точке. Эти точки являются вершинами 2009-угольника площади S. Каждую из отмеченных точек отразили относительно середины стороны, на которой эта точка лежит. Докажите, что 2009-угольник с вершинами в отражённых точках также имеет площадь S.

Прислать комментарий     Решение

Задача 116247  (#5)

Темы:   [ Комбинаторика (прочее) ]
[ Принцип крайнего (прочее) ]
[ Соображения непрерывности ]
Сложность: 4-
Классы: 10,11

В стране две столицы и несколько городов, некоторые из них соединены дорогами. Среди дорог есть платные. Известно, что на любом пути из южной столицы в северную имеется не меньше 10 платных дорог. Докажите, что все платные дороги можно раздать 10 компаниям так, чтобы на любом пути из южной столицы в северную имелись дороги каждой из компаний.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .