ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Расположите в кружочках (вершинах правильного десятиугольника) числа от 1 до 10 так, чтобы для любых двух соседних чисел их сумма была равна сумме двух чисел, им противоположных (симметричных относительно центра окружности).

Вниз   Решение


Максимальное время работы на одном тесте: 1 секунда

На плоскости задано N векторов - направленных отрезков, для каждого из которых известны координаты начала и конца (вектор, у которого начало и конец совпадают, называется нуль-вектором, можно считать, что нуль-вектор лежит на любой прямой, которая через него проходит). Введем следующие три операции над направленными отрезками на плоскости:

1) Направленные отрезки ненулевой длины, лежащие на пересекающихся прямых, можно заменить на их сумму, причем единственным образом. В этом случае отрезки переносятся вдоль своих прямых так, чтобы их начала совпадали с точкой пересечения прямых, и складываются по правилу сложения векторов (правилу параллелограмма, при этом началом результирующего вектора является точка пересечения прямых):

2) Направленные отрезки, лежащие на одной прямой, также можно заменить на их сумму. Для этого один из отрезков (любой) нужно перенести в начало второго из них и сложить по правилу сложения векторов на прямой:

Это правило применимо и в случае, когда один из векторов, или даже оба, являются нуль-векторами.

Заметим, что если складываемые векторы противоположно направлены и имеют одну и ту же длину, то результатом их сложения является нуль-вектор.

3) В любой точке плоскости можно породить два противоположно направленных отрезка равной (в том числе и нулевой) длины:

Будем говорить, что некоторая система векторов B эквивалентна системе A, если от системы A можно перейти к B с помощью конечной последовательности перечисленных выше операций.

Требуется получить любую систему векторов, эквивалентную заданной, состоящую из минимально возможного числа векторов.

Формат входных данных

В первой строке входного файла f.in записано число N - количество заданных векторов (1 < N ≤ 1000). В каждой из следующих N строк через пробел записаны четыре числа, обозначающие координаты начала и конца каждого из векторов соответственно. Все координаты - целые числа, по модулю не превосходящие 1000.

Формат выходных данных

В первой строке входного файла f.out следует записать число M - количество векторов в полученной системе (1 ≤ MN). В каждой из следующих M строк через пробел должны находиться четыре числа, обозначающие координаты начала и конца каждого из векторов соответственно. Все координаты - вещественные числа, записанные с 6 цифрами после точки.

Примеры

f.in

f.out

3

1 1 1 3

3 3 3 1

5 1 7 1

1

3.000000 3.000000 5.000000 3.000000

2

2 4 5 10

-2 -4 -5 -10

1

2.000000 4.000000 2.000000 4.000000

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 [Всего задач: 59]      



Задача 60331  (#01.058)

 [Теорема Эйлера]
Темы:   [ Эйлерова характеристика ]
[ Формула Эйлера. Эйлерова характеристика ]
[ Индукция в геометрии ]
Сложность: 5
Классы: 10,11

Докажите, что для любого выпуклого многогранника имеет место соотношение

B - P + Г = 2,

где B — число его вершин, P — число ребер, Г — число граней.

Прислать комментарий     Решение

Задача 60332  (#01.059)

 [Задача Сильвестра]
Тема:   [ Выпуклые многоугольники ]
Сложность: 3
Классы: 9,10

На плоскости взяты несколько точек так, что на каждой прямой, соединяющей любые две из них, лежит по крайней мере еще одна точка. Докажите, что все точки лежат на одной прямой.

Прислать комментарий     Решение

Задача 60333  (#01.060)

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Индукция в геометрии ]
[ Выпуклые многоугольники ]
Сложность: 3
Классы: 8,9,10

Выпуклая оболочка. Докажите, что для любого числа точек плоскости найдется выпуклый многоугольник с вершинами в некоторых из них, содержащий внутри себя все остальные точки.

Прислать комментарий     Решение

Задача 60334  (#01.061)

Темы:   [ Уравнения в целых числах ]
[ Алгебраические задачи на неравенство треугольника ]
Сложность: 3
Классы: 8,9,10

Сколько существует (невырожденных) треугольников периметра 100 с целыми длинами сторон?

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 [Всего задач: 59]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .