ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Середины сторон выпуклого шестиугольника образуют шестиугольник, противоположные стороны которого параллельны. Найдите все трехзначные числа, каждая натуральная степень которых оканчивается на три цифры, составляющие первоначальное число.
Найдите четырехзначное число, являющееся точным квадратом, первые две цифры которого равны между собой и последние две цифры которого также равны между собой.
Окружность покрыта несколькими дугами. Эти дуги могут налегать друг на друга, но ни одна из них не покрывает окружность целиком. Доказать, что всегда можно выбрать несколько из этих дуг так, чтобы они тоже покрывали всю окружность и составляли в сумме не более 720o . |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]
Докажите, что количество положительных корней многочлена f(x) = anxn + ... + a1x + a0 не превосходит числа перемен знака в последовательности an, ..., a1, a0.
Как правило знаков Декарта применить к оценке числа отрицательных корней многочлена f(x) = anxn + ... + a1x + a0?
Докажите, что многочлен a³(b² – c²) + b³(c² – a²) + c³(a² – b²) делится на (b – c)(c – a)(a – b).
Докажите, что из равенства P(x) = Q(x)T(x) + R(x) следует соотношение (P(x), Q(x)) = (Q(x), R(x)).
Пусть P(x) и Q(x) – многочлены, причём Q(x) не равен нулю тождественно и P(x) не делится на Q(x). Докажите, что при некотором s ≥ 1 существуют такие многочлены A0(x), A1(x), ..., As(x) и R1(x), ..., Rs(x), что degQ(x) > degR1(x) > degR2(x) > ... > degRs(x) ≥ 0,
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке