Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Кружки, факультативы, спецкурсы:
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

В прямой угол вписана окружность. Хорда, соединяющая точки касания, равна 2. Найдите расстояние от центра окружности до этой хорды.

Вниз   Решение


Пусть  P(x) = anxn + ... + a1x + a0  – многочлен с целыми коэффициентами.
Докажите, что хотя бы одно из чисел  |3n+1P(n + 1)|,  ...,  |31P(1)|,  |1 – P(0)|  не меньше 1.

ВверхВниз   Решение


На прямой отмечено 45 точек, лежащих вне отрезка AB. Докажите, что сумма расстояний от этих точек до точки A не равна сумме расстояний от этих точек до точки B.

ВверхВниз   Решение


Найдите самое маленькое k, при котором k! делится на 2040.

ВверхВниз   Решение


Пусть a, b и c – три различных числа. Решите систему    

ВверхВниз   Решение


Автор: Рубин А.

Три шахматиста A, B и C сыграли матч-турнир (каждый с каждым сыграл одинаковое число партий). Может ли случиться, что по числу очков A занял первое место, C – последнее, а по числу побед, наоборот, A занял последнее место, C – первое (за победу присуждается одно очко, за ничью – пол-очка)?

ВверхВниз   Решение


В параллелограмме ABCD на диагонали AC отмечена точка K . Окружность s1 проходит через точку K и касается прямых AB и AD , причём вторая точка пересечения s1 с диагональю AC лежит на отрезке AK . Окружность s2 проходит через точку K и касается прямых CB и CD , причём вторая точка пересечения s2 с диагональю AC лежит на отрезке KC . Докажите, что при всех положениях точки K на диагонали AC прямые, соединяющие центры окружностей s1 и s2 , будут параллельны между собой.

ВверхВниз   Решение


Целые числа a и b таковы, что  56a = 65b.  Докажите, что   a + b  – составное число.

ВверхВниз   Решение


Докажите, что если  f(x) – многочлен, степень которого меньше n, то дробь     (x1, x2, ..., xn  – произвольные попарно различные числа) может быть представлена в виде суммы n простейших дробей:  
где  A1, A2, ..., An  – некоторые константы.

ВверхВниз   Решение


Правда или ложь? Пошел Иван-царевич искать Василису Прекрасную. Дошел до распутья и задумался. Вдруг видит — Баба-Яга. А про эту Бабу-Ягу всем было известно, что, через день на все вопросы она отвечает правду, а через день — ложь. Ивану-царевичу можно задать Бабе-Яге ровно один вопрос, после чего надо выбрать, по какой из двух дорог идти. Какой вопрос Иван-царевич может задать Бабе-Яге, чтобы наверняка выяснить, какая из дорог ведет в Кощеево царство?

ВверхВниз   Решение


Докажите, что сумма расстояний от произвольной точки, лежащей на основании равнобедренного треугольника, до боковых сторон постоянна.

Вверх   Решение

Задачи

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 644]      



Задача 32924

Темы:   [ Задачи на смеси и концентрации ]
[ Инварианты ]
Сложность: 2+
Классы: 7

Из бочки с водой в бочку с вином перелили стакан воды. Потом передумали и перелили обратно стакан вина. Чего больше: вина в воде или воды в вине?

Прислать комментарий     Решение

Задача 32925

Темы:   [ Задачи на проценты и отношения ]
[ Парадоксы ]
Сложность: 2+
Классы: 7

Свежий арбуз весил 10 килограмм и на 99% состоял из воды. На базе арбуз подсох (часть воды испарилась) и в нем стало 98% воды.
Сколько он теперь весит?

Прислать комментарий     Решение

Задача 32984

Тема:   [ Уравнения в целых числах ]
Сложность: 2+
Классы: 8

Жители города Глупова пользуются купюрами только в 35 и 80 тыров. Сможет ли рассчитаться продавец с покупателем, который хочет купить
  a) шоколадку за 57 тыров;
  б) булочку за 15 тыров?

Прислать комментарий     Решение

Задача 32986

Темы:   [ Признаки делимости (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Произведения и факториалы ]
Сложность: 2+
Классы: 7,8,9

Найдите самое маленькое k, при котором k! делится на 2040.

Прислать комментарий     Решение

Задача 32989

Темы:   [ Арифметика остатков (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Разложение на множители ]
Сложность: 2+
Классы: 7,8,9

Докажите, что  1 + 277 + 377 + ... + 199677  делится на 1997.

Прислать комментарий     Решение

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 644]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .