ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Основанием призмы ABCDA1B1C1D1 служит трапеция ABCD , в которой AB || CD , CD:AB=n<1 . Диагональ AC1 пересекает диагонали A1C и D1B соответственно в точках M и N , а диагональ DB1 пересекает диагонали A1C и D1B соответственно в точках Q и P . Известно, что MNPQ – правильный тетраэдр. Найдите отношение объёма тетраэдра к объёму призмы. Высота AA', медиана BB' и биссектриса CC' треугольника ABC пересекаются в точке K. Известно, что A'K = B'K. На стороне AC треугольника ABC взята точка E. Через точку E
проведены прямая DE параллельно стороне BC и прямая EF параллельно
стороне AB (D и E — точки соответственно на этих сторонах).
Докажите, что
SBDEF = 2 |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 59]
Пусть
a = (a1, a2) и
b = (b1, b2). Докажите, что
a
а) Докажите, что
S(A, B, C) = - S(B, A, C) = S(B, C, A).
Три бегуна A, B и C бегут по параллельным
дорожкам с постоянными скоростями. В начальный момент
площадь треугольника ABC равна 2, через 5 с равна 3.
Чему может быть она равна еще через 5 с?
По трем прямолинейным дорогам с постоянными
скоростями идут три пешехода. В начальный момент времени
они не находились на одной прямой. Докажите, что они
могут оказаться на одной прямой не более двух раз.
Решите с помощью псевдоскалярного произведения задачу 4.29, б.
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 59]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке