ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На шахматной доске более четверти полей занято шахматными фигурами. Докажите, что занятыми оказались хотя бы две соседние (по стороне или диагонали) клетки.

   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 110]      



Задача 57070  (#06.057)

Тема:   [ Правильные многоугольники ]
Сложность: 3
Классы: 9

Существует ли правильный многоугольник, длина одной диагонали которого равна сумме длин двух других диагоналей?

Прислать комментарий     Решение

Задача 57071  (#06.058)

Темы:   [ Правильные многоугольники ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 4+
Классы: 9

Правильный (4k+2)-угольник вписан в окружность радиуса R с центром O.
Докажите, что сумма длин отрезков, высекаемых углом   AkOAk+1 на прямых   A1A2k, A2A2k–1, ..., AkAk+1,  равна R.

Прислать комментарий     Решение

Задача 57072  (#06.059)

Темы:   [ Правильные многоугольники ]
[ Теоремы Чевы и Менелая ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 4-
Классы: 9,10,11

В правильном восемнадцатиугольнике A0...A17 проведены диагонали A0Ap+3, Ap+1A18–r и A1Ap+q+3.
Докажите, что указанные диагонали пересекаются в одной точке в любом из следующих случаев:
  а)  {p, q, r} = {1, 3, 4},
  б)  {p, q, r} = {2, 2, 3}.

Прислать комментарий     Решение

Задача 57073  (#06.060)

Темы:   [ Правильные многоугольники ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 6
Классы: 9

Докажите, что в правильном тридцатиугольнике A1...A30 следующие тройки диагоналей:
  а) A1A7, A2A9, A4A23;
  б) A1A7, A2A15, A4A29;
  в) A1A13, A2A15, A10A29
пересекаются в одной точке.

Прислать комментарий     Решение

Задача 57074  (#06.061)

Темы:   [ Правильные многоугольники ]
[ Взаимное расположение двух окружностей ]
Сложность: 3+
Классы: 9

В правильном n-угольнике  (n ≥ 3)  отмечены середины всех сторон и диагоналей.
Какое наибольшее число отмеченных точек лежит на одной окружности?

Прислать комментарий     Решение

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .