ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На длинной ленте написаны цифры 201520152015…. Вася вырезал ножницами два куска ленты и составил из них положительное число, которое делится на 45. Приведите пример таких кусков и запишите число, составленное из них.

Вниз   Решение


Автор: Салимов Р.

Первая производная бесконечной последовательности $a_1, a_2$, ... – это последовательность  $a'_n = a_{n+1} - a_n$  (где  $n$ = 1, 2, ...), а её k-я производная – это первая производная её ($k$–1)-й производной
($k$ = 2, 3, ...).  Назовём последовательность хорошей, если она и все её производные состоят из положительных чисел. Докажите, что если $a_1, a_2$, ... и $b_1, b_2$, ... – хорошие последовательности, то и $a_1b_1, a_2b_2$, ... – хорошая последовательность.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 53]      



Задача 66290

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9

Постройте на координатной плоскости множество точек, удовлетворяющих равенству  max {x, x²} + min {y, y²} = 1.

Прислать комментарий     Решение

Задача 66291

Темы:   [ Признаки и свойства параллелограмма ]
[ Неравенство треугольника (прочее) ]
Сложность: 3+
Классы: 8,9

Внутри параллелограмма ABCD расположена точка М. Сравните периметр параллелограмма и сумму расстояний от М до его вершин.

Прислать комментарий     Решение

Задача 66292

Темы:   [ Принцип Дирихле (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

В театральной труппе 60 актеров. Каждые два хотя бы раз играли в одном и том же спектакле. В каждом спектакле занято не более 30 актеров.
Какое наименьшее количество спектаклей мог поставить театр?

Прислать комментарий     Решение

Задача 66293

Тема:   [ Классические неравенства (прочее) ]
Сложность: 3+
Классы: 8,9

Положительные числа x, y, z таковы, что  xyz = 1.  Докажите, что  

Прислать комментарий     Решение

Задача 66295

Темы:   [ Четность и нечетность ]
[ Малая теорема Ферма ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9

Пусть N – чётное число, которое не кратно 10. Найдите цифру десятков числа N20.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 53]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .