|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На доске написано 5 чисел. Сложив их попарно, получили числа: 0, 2, 4, 4, 6, 8, 9, 11, 13 и 15. Какие это числа? Доказать, что дробь $\frac{12n+1}{30n+1}$ несократима. На физическом кружке учитель поставил следующий эксперимент. Он разложил на чашечные весы 16 гирек массами 1, 2, 3, ..., 16 грамм так, что одна из чаш перевесила. Пятнадцать учеников по очереди выходили из класса и забирали с собой по одной гирьке, причем после выхода каждого ученика весы меняли свое положение и перевешивала противоположная чаша весов. Какая гирька могла остаться на весах? |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 53]
На сторонах AB и BC равностороннего треугольника ABC отмечены точки D и K соответственно, а на стороне AC отмечены точки E и M так, что DA + AE = KC + CM = AB. Отрезки DM и KE пересекаются. Найдите угол между ними.
Есть 2018 гирек массами 1 г, 2 г, ..., 2018 г. Заяц положил на одну чашу весов две гирьки. Волк хотел двумя другими гирьками на другой чаше их уравновесить, но не смог. Какие гирьки мог взять Заяц?
Найдите наименьшее значение выражения а4 – а2 – 2а.
На гипотенузе AВ прямоугольного треугольника ABC отметили точку D так, что ВD = AС. Докажите, что в треугольнике AСD биссектриса AL, медиана СM и высота DH пересекаются в одной точке.
В треугольнике АВС ∠В = 110°, ∠С = 50°. На стороне АВ выбрана такая точка Р, что ∠РСВ = 30°, а на стороне АС – такая точка Q, что
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 53] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|