ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Каждая сторона треугольника разделена на три равные части. Точки деления служат вершинами двух треугольников, пересечение которых – шестиугольник. Найдите площадь этого шестиугольника, если площадь данного треугольника равна S. Треугольник ABC вписан в окружность. Точка A1 диаметрально противоположна точке A, точка A0 – середина стороны BC, точка A2 симметрична точке A1 относительно точки A0. Точки B2 и C2 определяются аналогично. Докажите, что точки A2, B2 и C2 совпадают. Каждая сторона выпуклого четырёхугольника разделена на три равные части. Соответствующие точки деления на противоположных сторонах соединены отрезками (cм. рис.). Докажите, что эти отрезки делят друг друга на три равные части. Пусть ABC – остроугольный треугольник, C' и A' – произвольные точки на сторонах AB и BC соответственно, B' – середина стороны AC. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 44]
Зафиксируем числа a0 и a1. Построим последовательность {an} в которой
an + 1 = Выразите an
через a0, a1 и n.
Старый калькулятор I. а) Предположим,
что мы хотим найти
yn + 1 =
Докажите, что
б) Постройте аналогичный алгоритм для вычисления корня пятой степени.
Старый калькулятор II. Производная функции ln x при x = 1 равна 1. Отсюда
Метод итераций.
Для того, чтобы приближенно решить уравнение, допускающее запись
f (x) = x, применяется метод итераций. Сначала выбирается
некоторое число x0, а затем строится последовательность
{xn} по правилу
xn + 1 = f (xn)
(n
Геометрической интерпретацией итерационного процесса служит итерационная ломаная. Для ее построения на плоскости Oxy
рисуется график функции f(x) и проводится биссектриса
координатного угла — прямая y=x. Затем на графике функции
отмечаются точки A0(x0,f(x0)),
A1(x1,f(x1)),...,
An(xn,f(xn)),... а на биссектрисе координатного угла —
точки
B0(x0,x0),
B1(x1,x1),...,
Bn(xn,xn),...
Ломаная B0A0B1A1...
BnAn... называется итерационной.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 44]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке