Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

По заданной последовательности положительных чисел  q1,..., qn, ...  строится последовательность многочленов следующим образом:
    f0(x) = 1,
    f1(x) = x,
      ...
    fn+1(x) = (1 + qn)xfn(x) – qnfn–1(x).
Докажите, что все вещественные корни n-го многочлена заключены между –1 и 1.

Вниз   Решение


Радиус окружности равен R. Найдите хорду, проведённую из конца данного диаметра через середину перпендикулярного к нему радиуса.

ВверхВниз   Решение


Высоты треугольника ABC пересекаются в точке H. Докажите, что радиусы окружностей, описанных около треугольников ABC, AHB, BHC и AHC, равны между собой.

ВверхВниз   Решение


Григорианский календарь. Обыкновенный год содержит 365 дней, високосный – 366. n-й год, номер которого не делится на 100, является високосным тогда и только тогда, когда n кратно 4. n-й год, где n кратно 100, является високосным тогда и только тогда, когда n кратно 400. Так, например, 1996 и 2000 годы високосные, а 1997 и 1900 – нет. Эти правила были установлены папой Григорием XIII. До сих пор мы имели ввиду гражданский год, число дней которого должно быть целым. Астрономическим же годом называется период времени, за который Земля совершает полный оборот вокруг Солнца. Считая, что григорианский год полностью согласован с астрономическим, найдите продолжительность астрономического года.

ВверхВниз   Решение


Окружности с центрами O1 и O2 пересекаются в точках A и B . Известно, что AO1B= 90o , AO2B = 60o , O1O2=a . Найдите радиусы окружностей.

ВверхВниз   Решение


Через центр окружности, вписанной в трапецию, проведена прямая, параллельная основаниям.
Докажите, что отрезок этой прямой, заключённый между боковыми сторонами, равен четверти периметра трапеции.

Вверх   Решение

Задачи

Страница: << 138 139 140 141 142 143 144 >> [Всего задач: 6702]      



Задача 53672

Темы:   [ Пересекающиеся окружности ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Окружности с центрами O1 и O2 пересекаются в точках A и B . Известно, что AO1B= 90o , AO2B = 60o , O1O2=a . Найдите радиусы окружностей.
Прислать комментарий     Решение


Задача 53694

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 8,9

Возможно ли, чтобы одна биссектриса треугольника делила пополам другую биссектрису?

Прислать комментарий     Решение

Задача 53695

Темы:   [ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

Два угла треугольника равны 40° и 80°. Найдите углы треугольника с вершинами в точках касания вписанной окружности со сторонами данного треугольника.

Прислать комментарий     Решение

Задача 53698

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 8,9

Вершина угла величиной 70° служит началом луча, образующего с его сторонами углы 30° и 40°. Из некоторой точки M на этот луч и на стороны угла опущены перпендикуляры, основания которых – A, B и C. Найдите углы треугольника ABC.

Прислать комментарий     Решение

Задача 53707

Темы:   [ Теорема синусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Площадь трапеции ]
[ Площадь четырехугольника ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9

Остроугольный равнобедренный треугольник и трапеция вписаны в окружность. Одно основание трапеции является диаметром окружности, а боковые стороны параллельны боковым сторонам треугольника. Найдите отношение площадей трапеции и треугольника.

Прислать комментарий     Решение

Страница: << 138 139 140 141 142 143 144 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .