ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В правильной треугольной пирамиде расположены два шара так, что первый касается основания пирамиды и её боковых рёбер, а второй шар касается первого шара внешним образом и боковых граней пирамиды. Радиус первого шара равен R . Найдите радиус второго шара, если объём пирамиды при этих условиях является минимально возможным. Найдите углы четырёхугольника ABCD, вершины которого расположены на окружности, если ∠ABD = 74°, ∠DBC = 38°, ∠BDC = 65°. Докажите, что любое иррациональное число α допускает представление α = [a0; a1, ..., an–1, αn], где a0 – целое, a1, a2, ..., an–1 – натуральные, αn > 1 – иррациональное действительное. Отсюда следует, что каждому иррациональному действительному числу можно поставить в соответствие бесконечную цепную дробь. Вершина угла величиной 70° служит началом луча, образующего с его сторонами углы 30° и 40°. Из некоторой точки M на этот луч и на стороны угла опущены перпендикуляры, основания которых – A, B и C. Найдите углы треугольника ABC. Сколько диагоналей имеет выпуклый: На боковых сторонах AB и BC равнобедренного треугольника ABC с углом 44° при вершине взяты такие точки M и N, что AM = BN = AC. Точка X на луче CA такова, что MX = AB Найдите угол MXN. Напишите в строчку первые 10 простых чисел. Как вычеркнуть 6 цифр, чтобы получилось наибольшее возможное число?
Даны точки A(2;4), B(6; - 4) и C(- 8; - 1). Докажите, что треугольник ABC прямоугольный.
|
Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]
Докажите, что каждое целое число A представимо в виде
A = a0 + 2a1 + 22a2 +...+ 2nan,
где каждое из чисел ak = 0,
1 или -1 и
akak + 1 = 0 для всех
0
Множество Кантора. Отрезок числовой оси от 0 до 1 покрашен в зеленый
цвет. Затем его средняя часть — интервал (1/3;2/3)
перекрашивается в красный цвет, потом средняя часть каждого из
оставшихся зелеными отрезков тоже перекрашивается в красный цвет,
с оставшимися зелеными отрезками проделывается та же операция и
так до бесконечности. Точки, оставшиеся зелеными, образуют
множество Кантора.
Последовательность Морса. Бесконечная последовательность из нулей и единиц
0110 1001 1001 0110 1001...
построена по следующему правилу. Сначала написан нуль. Затем
делается бесконечное количество шагов. На каждом шаге к уже
написанному куску последовательности приписывается новый кусок
той же длины, получаемый из него заменой всех нулей единицами, а
единиц — нулями.
а) Какая цифра стоит на 2001 месте? б) Будет ли эта последовательность, начиная с некоторого места, периодической? в) Докажите, что данная последовательность переходит в себя при замене каждого нуля на комбинацию 01, а каждой единицы — на комбинацию 10. г) Докажите, что ни одно конечно слово из нулей и единиц не встречается в последовательности Морса три раза подряд. д) Как, зная представление числа n в двоичной системе счисления, найти n-й элемент данной последовательности?
Ханойская башня и двоичная
система счисления.
Рассмотрим два
процесса, каждый из которых состоит из 28 - 1 шагов. Первый —
это процесс решения головоломки ``Ханойская башня'' (смотри задачу
1.42) при
помощи оптимального алгоритма. Второй — это процесс прибавления
единицы, который начинается с 0 и заканчивается числом 28 - 1.
Опишите связь между этими двумя процессами.
Задача Иосифа Флавия.
n человек выстраиваются по кругу и
нумеруются числами от 1 до n. Затем из них исключается каждый
второй до тех пор, пока не останется только один человек.
Например, если n = 10, то порядок исключения таков: 2, 4,
6, 8, 10, 3, 7, 1, 9, так что остается номер 5.
Для данного n будем обозначать через J(n) номер последнего
оставшегося человека. Докажите, что
Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке