ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Последовательность чисел a1, a2,..., an... образуется следующим образом:
a1 = a2 = 1; an =
Доказать, что все числа в последовательности — целые.
На доске выписаны числа 1, 2, ..., 100. На каждом этапе одновременно стираются все числа, не имеющие среди нестёртых чисел делителей, кроме себя самого. Например, на первом этапе стирается только число 1. Какие числа будут стёрты на последнем этапе? На боковых сторонах AB и CD трапеции ABCD отмечены точки P и Q так, что прямая PQ параллельна AD, а отрезок PQ делится диагоналями трапеции на три равные части. Найдите длину оонования BC, если известно, что AD = a, PQ = m, а точка пересечения диагоналей трапеции лежит внутри четырёхугольника BPCQ. Отмечены вершины и середины сторон правильного десятиугольника (то есть всего отмечено 20 точек). |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 141]
Найдите все значения x, удовлетворяющие неравенству (2 – a)x³ + (1 – 2a)x² – 6x + 5 + 4a – a² < 0 хотя бы при одном значении a из отрезка [–1, 2].
Пусть P(x) и Q(x) – многочлены,
причём Q(x) не равен нулю тождественно. Докажите, что существуют
такие многочлены T(x) и R(x), что
Докажите, что остаток от деления многочлена P(x) на x – c равен P(c).
Докажите, что многочлен степени n имеет не более чем n корней.
Можно ли из какой-то точки плоскости провести к графику многочлена n-й степени больше чем n касательных?
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 141]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке