ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости заданы выпуклый многоугольник M и точка P(x, y). За один ход разрешается центрально-симметрично отразить многоугольник относительно середины любой из его сторон. Требуется найти последовательность ходов, в результате которой точка P оказалась бы накрытой этим многоугольником. 

Входные данные

Во входном файле записано количество вершин многоугольника N (3 ≤ N ≤ 20) и координаты точки x и y. Далее перечислены координаты вершин многоугольника в порядке обхода по часовой стрелке. Все координаты – целые числа, не превосходящие по абсолютной величине 105.

Выходные данные

Если точку P накрыть нельзя, запишите в выходной файл сообщение «Impossible». В противном случае выведите в него последовательность ходов, после выполнения которой многоугольник M накроет точку P. Каждый ход задается номерами вершин той стороны, относительно середины которой производится преобразование центральной симметрии. Вершины многоугольника нумеруются начиная с 1.

Пример входного файла

3 3 2
0 1 1 2 1 0

Пример выходного файла

2 3
3 1
2 3

   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 100]      



Задача 57489  (#10.078)

Тема:   [ Неравенства для остроугольных треугольников ]
Сложность: 4+
Классы: 8

В остроугольном треугольнике ABC проведены высоты  AA1, BB1 и CC1. Докажите, что периметр треугольника A1B1C1 не превосходит половины периметра треугольника ABC.
Прислать комментарий     Решение


Задача 57490  (#10.078.1)

Тема:   [ Неравенства для остроугольных треугольников ]
Сложность: 5
Классы: 8

Пусть $ \angle$A < $ \angle$B < $ \angle$C < 90o. Докажите, что центр вписанной окружности треугольника ABC лежит внутри треугольника BOH, где O — центр описанной окружности, H — точка пересечения высот.
Прислать комментарий     Решение


Задача 57491  (#10.079)

Тема:   [ Неравенства для остроугольных треугольников ]
Сложность: 5+
Классы: 8

Пусть h — наибольшая высота нетупоугольного треугольника. Докажите, что r + R $ \leq$ h.
Прислать комментарий     Решение


Задача 57492  (#10.080)

Тема:   [ Неравенства для остроугольных треугольников ]
Сложность: 6
Классы: 8

На сторонах BC, CA и AB остроугольного треугольника ABC взяты точки A1, B1 и C1. Докажите, что

2(B1C1cos$\displaystyle \alpha$ + C1A1cos$\displaystyle \beta$ + A1B1cos$\displaystyle \gamma$) $\displaystyle \geq$ a cos$\displaystyle \alpha$ + b cos$\displaystyle \beta$ + c cos$\displaystyle \gamma$.


Прислать комментарий     Решение

Задача 57493  (#10.081)

Тема:   [ Неравенства для остроугольных треугольников ]
Сложность: 4+
Классы: 8

Докажите, что треугольник со сторонами a, b и c остроугольный тогда и только тогда, когда  a2 + b2 + c2 > 8R2.
Прислать комментарий     Решение


Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 100]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .