Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

На прямоугольном листе бумаги нарисован круг, внутри которого Миша мысленно выбирает n точек, а Коля пытается их разгадать. За одну попытку Коля указывает на листе (внутри или вне круга) одну точку, а Миша сообщает Коле расстояние от нее до ближайшей неразгаданной точки. Если оно оказывается нулевым, то после этого указанная точка считается разгаданной. Коля умеет отмечать на листе точки, откладывать расстояния и производить построения циркулем и линейкой. Может ли Коля наверняка разгадать все выбранные точки менее, чем за (n+1)2 попыток?

Вниз   Решение


Пусть K, L, M и N — середины сторон AB, BC, CD и DA выпуклого четырехугольника ABCD.
а) Докажите, что KM$ \le$(BC + AD)/2, причем равенство достигается, только если BC| AD.
б) При фиксированных длинах сторон четырехугольника ABCD найдите максимальные значения длин отрезков KM и LN.

ВверхВниз   Решение


Три велосипедиста ездят по кольцевой дороге радиуса 1 км против часовой стрелки с постоянными различными скоростями.
Верно ли, что, если они будут кататься достаточно долго, то найдётся момент, когда расстояние между каждыми двумя из них будет больше 1 км?

ВверхВниз   Решение


Пусть O – одна из точек пересечения окружностей ω1 и ω2. Окружность ω с центром O пересекает ω1 в точках A и B, а ω2 – в точках C и D. Пусть X – точка пересечения прямых AC и BD. Докажите, что все такие точки X лежат на одной прямой.

ВверхВниз   Решение


Выпуклый n-угольник разрезан на треугольники непересекающимися диагоналями. Рассмотрим преобразование такого разбиения, при котором треугольники ABC и ACD заменяются на треугольники ABD и BCD. Пусть P(n) — наименьшее число преобразований, за которое любое разбиение можно перевести в любое другое. Докажите, что: а) P(n)$ \ge$n - 3; б) P(n)$ \le$2n - 7; в) P(n)$ \le$2n - 10 при n$ \ge$13.

ВверхВниз   Решение


В клетках шахматной доски записаны в произвольном порядке натуральные числа от 1 до 64 (в каждой клетке записано ровно одно число и каждое число записано ровно один раз). Может ли в ходе шахматной партии сложиться ситуация, когда сумма чисел, записанных в клетках, занятых фигурами, ровно вдвое меньше суммы чисел, записанных в клетках, свободных от фигур?

ВверхВниз   Решение


В каждый угол треугольника ABC вписана окружность, касающаяся описанной окружности. Пусть A1, B1 и C1 — точки касания этих окружностей с описанной окружностью. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке.

ВверхВниз   Решение


Докажите, что эллиптическое зеркало обладает тем свойством, что пучок лучей света, исходящий из одного фокуса, сходится в другом.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



Задача 56882

Темы:   [ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Средняя линия треугольника ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC сторона AB больше стороны BC. Пусть A1 и B1 – середины сторон BC и AC, а B2 и C2 – точки касания вписанной окружности со сторонами AC и AB. Докажите, что отрезки A1B1 и B2C2 пересекаются в точке X, лежащей на биссектрисе угла B.

Прислать комментарий     Решение

Задача 55462

Темы:   [ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Периметр треугольника ]
[ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Вписанные и описанные окружности ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4-
Классы: 8,9

Докажите, что прямая делит периметр и площадь треугольника в равных отношениях тогда и только тогда, когда она проходит через центр вписанной окружности треугольника.

Прислать комментарий     Решение

Задача 56881

Темы:   [ Тригонометрические уравнения ]
[ Разложение на множители ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 8,9

Пусть  x = sin 18°.  Докажите, что  4x² + 2x = 1.

Прислать комментарий     Решение

Задача 56883

Темы:   [ Три точки, лежащие на одной прямой ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Средняя линия треугольника ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 4-
Классы: 8,9

Докажите, что проекции вершины A треугольника ABC на биссектрисы внешних и внутренних углов при вершинах B и C лежат на одной прямой.

Прислать комментарий     Решение

Задача 56892

Темы:   [ Треугольники (прочее) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Тождественные преобразования ]
Сложность: 4-
Классы: 8,9

На сторонах треугольника ABC взяты точки A1, B1 и C1 так, что  AB1 : B1C = cn : an,  BC1 : C1A = an : bn  и  CA1 : A1B = bn : cn  (a, b, c – длины сторон треугольника). Описанная окружность треугольника A1B1C1 высекает на сторонах треугольника ABC отрезки длиной ±x, ±y и ±z (знаки выбираются в соответствии с ориентацией треугольника). Докажите, что  

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .