ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 66626  (#1)

Темы:   [ Теория алгоритмов (прочее) ]
[ Текстовые задачи (прочее) ]
Сложность: 2
Классы: 5,6,7

Четыре мышонка: Белый, Серый, Толстый и Тонкий делили головку сыра. Они разрезали её на 4 внешне одинаковые дольки. В некоторых дольках оказалось больше дырок, поэтому долька Тонкого весила на 20 г меньше дольки Толстого, а долька Белого — на 8 г меньше дольки Серого. Однако Белый не расстроился, т.к. его долька весила ровно четверть от массы всего сыра.

Серый отрезал от своего куска 8 г, а Толстый — 20 г. Как мышата должны поделить образовавшиеся 28 г сыра, чтобы у всех сыра стало поровну? Не забудьте пояснить свой ответ.

Прислать комментарий     Решение

Задача 66627  (#2)

Тема:   [ Геометрия на клетчатой бумаге ]
Сложность: 3
Классы: 6,7,8

На клетчатой бумаге отмечены 6 точек (см. рисунок). Проведите три прямые так, чтобы одновременно выполнялись три условия:

  • каждая отмеченная точка лежала хотя бы на одной из этих прямых,
  • на каждой прямой лежало хотя бы две отмеченные точки,
  • все три проведённые прямые пересекались бы в одной точке (не обязательно отмеченной).

Прислать комментарий     Решение

Задача 66628  (#3)

Тема:   [ Инварианты ]
Сложность: 2+
Классы: 6,7,8

Автор: Фольклор

У Ильи есть табличка $3\times 3$, заполненная числами от $1$ до $9$ так, как в таблице слева. За один ход Илья может поменять местами любые две строчки или любые два столбца. Может ли он за несколько ходов получить таблицу справа?

1 2 3
4 5 6
7 8 9
1 4 7
2 5 8
3 6 9

Прислать комментарий     Решение

Задача 66629  (#4)

Темы:   [ Делимость чисел. Общие свойства ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 7,8,9

Пусть $a$, $b$, $c$, $d$ и $n$ — натуральные числа. Докажите, что если числа $(a-b)(c-d)$ и $(a-c)(b-d)$ делятся на $n$, то и число $(a-d)(b-c)$ делится на $n$.
Прислать комментарий     Решение


Задача 66630  (#5)

Темы:   [ Таблицы и турниры (прочее) ]
[ Комбинаторика (прочее) ]
Сложность: 3
Классы: 8,9,10,11

В школе провели турнир по настольному теннису. Турнир состоял из нескольких туров. В каждом туре каждый участник играл ровно в одном матче, а каждый матч судил один из не участвовавших в нем игроков.

После нескольких туров оказалось, что каждый участник сыграл по одному разу с каждым из остальных. Может ли оказаться, что все участники турнира судили одинаковое количество встреч?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .