Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 51]
|
|
Сложность: 4 Классы: 9,10,11
|
Большая окружность вписана в ромб, каждая из двух меньших окружностей касается двух сторон ромба и большой окружности, как на рисунке. Через точки касания окружностей со сторонами ромба провели четыре штриховые прямые, как на рисунке. Докажите, что они образуют квадрат.
|
|
Сложность: 4 Классы: 8,9,10,11
|
На прямой отмечено 2022 точки так, что каждые две соседние точки расположены на одинаковом расстоянии. Половина точек покрашена в красный цвет, а другая половина – в синий. Может ли сумма длин всевозможных отрезков, у которых левый конец красный, а правый – синий, равняться сумме длин всех отрезков, у которых левый конец синий, а правый – красный? (Концы рассматриваемых отрезков – не обязательно соседние отмеченные точки.)
|
|
Сложность: 4 Классы: 8,9,10,11
|
Дан остроугольный неравнобедренный треугольник. Одним действием разрешено разрезать один из имеющихся треугольников по медиане на два треугольника. Могут ли через несколько действий все треугольники оказаться равнобедренными?
|
|
Сложность: 4 Классы: 8,9,10,11
|
Доска 2N×2N покрыта неперекрывающимися доминошками 1×2. По доске прошла
хромая ладья, побывав на каждой клетке по одному разу (каждый ход хромой ладьи – на клетку, соседнюю по стороне). Назовём ход
продольным, если это переход из одной клетки доминошки на другую клетку той же доминошки. Каково
а) наибольшее;
б) наименьшее возможное число продольных ходов?
|
|
Сложность: 4 Классы: 8,9,10,11
|
Для каждого из чисел 1, 19, 199, 1999 и т. д. изготовили одну отдельную карточку и записали на ней это число.
а) Можно ли выбрать не менее трёх карточек так, чтобы сумма чисел на них равнялась числу, все цифры которого, кроме одной, – двойки?
б) Пусть выбрали несколько карточек так, что сумма чисел на них равна числу, все цифры которого, кроме одной, – двойки. Какой может быть его цифра, отличная от двойки?
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 51]