ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Существуют ли такие 99 последовательных натуральных чисел, что наименьшее из них делится на 100, следующее делится на 99, третье делится на 98, ..., последнее делится на 2?

   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 83]      



Задача 30889  (#046)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 3
Классы: 8,9

a, b, c ≥ 0.  Докажите, что  2(a³ + b³ + c³) ≥ a²b + ab² + a²c + ac² + b²c + bc².

Прислать комментарий     Решение

Задача 61385  (#047)

Темы:   [ Классические неравенства (прочее) ]
[ Перестановки и подстановки (прочее) ]
[ Инварианты и полуинварианты ]
Сложность: 3
Классы: 8,9,10,11

Докажите, что если   a1a2 ≥ ... ≥ an,   b1b2 ≥ ... ≥ bn,   то наибольшая из сумм вида   a1bk1 + a2bk2 + ... + anbkn     (k1, k2, ..., kn – перестановка чисел
1, 2, ..., n),  это сумма   a1b1 + a2b2 + ... + anbn,   а наименьшая – сумма   a1bn + a2bn–1 + ... + anb1.

Прислать комментарий     Решение

Задача 30891  (#048)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Формулы сокращенного умножения (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
[ Замена переменных (прочее) ]
Сложность: 3+
Классы: 6,7

Докажите, что при любом x выполняется неравенство  x(x + 1)(x + 2)(x + 3) ≥ –1.

Прислать комментарий     Решение

Задача 30892  (#049)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 6,7

Докажите, что при любых x, y, z выполнено неравенство: x4 + y4 + z² + 1 ≥ 2x(xy² – x + z + 1).

Прислать комментарий     Решение

Задача 30893  (#050)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Тождественные преобразования ]
Сложность: 4-
Классы: 6,7

Докажите, что   .

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 83]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .