|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Восемь волейбольных команд провели турнир в один круг (каждая команда сыграла с каждой один раз). Доказать, что можно выделить такие четыре команды A, B, C и D, что A выиграла у B, C и D; B выиграла у C и D, C выиграла у D. |
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 141]
Докажите, что при нечетном m выражение (x + y + z)m – xm – ym – zm делится на (x + y + z)3 – x3 – y3 – z3.
Пусть a, b, c — попарно различные числа. Докажите, что выражение a2(c – b) + b2(a – c) + c2(b – a) не равно нулю.
Докажите, что если три числа a, b, c связаны соотношением 1/a + 1/b + 1/c = 1/a+b+c, то какие-либо два из этих чисел в сумме дают 0.
Докажите, что если a + b + c = 0, то 2(a5 + b5 + c5) = 5abc(a2 + b2 + c2).
Докажите, что если (p, q) = 1 и p/q – рациональный корень многочлена P(x) = anxn + ... + a1x + a0 с целыми коэффициентами, то
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 141] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|