Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Точка M лежит на описанной окружности треугольника ABCR — произвольная точка. Прямые AR, BR и CR пересекают описанную окружность в точках A1, B1 и C1. Докажите, что точки пересечения прямых MA1 и BCMB1 и CAMC1 и AB лежат на одной прямой, проходящей через точку R.

Вниз   Решение


Докажите, что любой выпуклый многоугольник можно разрезать на остроугольные треугольники.

ВверхВниз   Решение


Какое минимальное количество спичек необходимо для того, чтобы выложить на плоскости N квадратов со стороной в одну спичку? Спички нельзя ломать и класть друг на друга. Вершинами квадратов должны быть точки, где сходятся концы спичек, а сторонами - сами спички.

Задание

Напишите программу MATCHES, которая по количеству квадратов N, которые необходимо составить, находит минимальное необходимое для этого количество спичек.

Входные данные

Единственная строка входного файла MATCHES.DAT содержит одно целое число N (1≤N≤109).

Выходные данные

Единственная строка выходного файла MATCHES.SOL должна содержать одно целое число - минимальное количество спичек требуемых для составления заданного количества квадратов.

Пример входных и выходных данных

MATCHES.DAT

MATCHES.SOL

4

12

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 78154  (#1)

Темы:   [ Неравенство треугольника (прочее) ]
[ Произвольные многоугольники ]
Сложность: 3
Классы: 9,10

Из бумаги вырезан многоугольник. Две точки его границы соединяются отрезком, по которому многоугольник складывается. Доказать, что периметр многоугольника, получающегося после складывания, меньше периметра исходного многоугольника.
Прислать комментарий     Решение


Задача 78155  (#2)

Темы:   [ Линейные неравенства и системы неравенств ]
[ Доказательство от противного ]
Сложность: 3
Классы: 9,10

Для любых чисел a1 и a2, удовлетворяющих условиям  a1 ≥ 0,  a2 ≥ 0,  a1 + a2 = 1,  можно найти такие числа b1 и b2, что  b1 ≥ 0,  b2 ≥ 0,  b1 + b2 = 1,
(5/4a1)b1 + 3(5/4a2)b2 > 1.  Доказать.

Прислать комментарий     Решение

Задача 78156  (#3)

Темы:   [ Угол между касательной и хордой ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 3+
Классы: 9,10

Внутри угла AOB взята точка C, опущены перпендикуляры CD на сторону OA и CE на сторону OB. Затем опущены перпендикуляры EM на сторону OA и DN на сторону OB. Доказать, что  OCMN.

Прислать комментарий     Решение

Задача 78157  (#4)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Арифметическая прогрессия ]
Сложность: 2+
Классы: 8,9,10

Доказать, что если целое  n > 1,  то  11·2²·3³·...·nn < nn(n+1)/2.

Прислать комментарий     Решение

Задача 78158  (#5)

Темы:   [ Покрытия ]
[ Геометрические неравенства (прочее) ]
Сложность: 4-
Классы: 9,10

Обозначим через a наибольшее число непересекающихся кругов диаметра 1, центры которых лежат внутри многоугольника M, через b — наименьшее число кругов радиуса 1, которыми можно покрыть весь многоугольник M. Какое число больше: a или b?
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .