Страница:
<< 1 2
3 4 5 >> [Всего задач: 25]
В городе N с каждой станции метро на любую другую можно проехать. Доказать, что одну из станций можно закрыть на ремонт без права проезда через неё так, чтобы с любой из оставшихся станций можно было по-прежнему проехать на любую
другую.
Пусть на плоскости есть пять точек общего положения, то есть никакие три из них
не лежат на одной прямой и никакие четыре — на одной окружности. Докажите,
что среди этих точек есть две такие, что они лежат по разные стороны от
окружности, проходящей через оставшиеся три точки.
|
|
Сложность: 3+ Классы: 9,10,11
|
Доказать, что у всякого выпуклого многогранника найдутся две грани с одинаковым
числом сторон.
|
|
Сложность: 4- Классы: 10,11
|
У трёхгранного угла проведены биссектрисы плоских углов. Доказать, что
попарные углы между биссектрисами либо одновременно тупые, либо одновременно
прямые, либо одновременно острые.
|
|
Сложность: 4- Классы: 7,8,9
|
В трёх вершинах квадрата находятся три кузнечика. Они играют в чехарду, то есть
прыгают друг через друга. При этом, если кузнечик A прыгает через кузнечика
B, то после прыжка он оказывается от B на том же расстоянии, что и до прыжка, и, естественно, на той же прямой. Может ли один из них попасть в
четвёртую вершину квадрата?
Страница:
<< 1 2
3 4 5 >> [Всего задач: 25]