|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи У Игоря и Вали есть по белому квадрату 8×8, разбитому на клетки 1×1. Они закрасили по одинаковому числу клеток на своих квадратах в синий цвет. Докажите, что удастся так разрезать эти квадраты на доминошки 2×1, что и из доминошек Игоря и из доминошек Вали можно будет сложить по квадрату 8×8 с одной и той же синей картинкой. В треугольнике ABC точка M – середина AB, а точка D – основание высоты CD. Докажите, что ∠A = 2∠B тогда и только тогда, когда AC = 2MD. Дан треугольник $ABC$ с углом $A$, равным $60^\circ$. Его вписанная окружность касается стороны $AB$ в точке $D$, а вневписанная окружность, касающаяся стороны $AC$, касается продолжения стороны $AB$ в точке $E$. Докажите, что перпендикуляр к стороне $AC$, проходящий через точку $D$, вторично пересекает вписанную окружность в точке, равноудаленной от точек $E$ и $C$. (Вневписанной называется окружность, касающаяся одной из сторон треугольника и продолжений двух других его сторон.) |
Страница: 1 [Всего задач: 5]
Докажите, что в правильном двенадцатиугольнике A1A2...A12 диагонали A1A5, A2A6, A3A8 и A4A11 пересекаются в одной точке.
Совет из 2000 депутатов решил утвердить государственный бюджет, содержащий 200 статей расходов. Каждый депутат подготовил свой проект бюджета, в котором указал по каждой статье максимально допустимую, по его мнению, величину расходов, проследив за тем, чтобы общая сумма расходов не превысила заданную величину S. По каждой статье совет утверждает наибольшую величину расходов, которую согласны выделить не менее k депутатов. При каком наименьшем k можно гарантировать, что общая сумма утверждённых расходов не превысит S?
Даны две непересекающиеся окружности, к которым проведены две общие внешние касательные. Рассмотрим равнобедренный треугольник, основание которого лежит на одной касательной, противоположная вершина – на другой, а каждая из боковых сторон касается одной из данных окружностей. Докажите, что высота треугольника равна сумме радиусов окружностей.
На прямоугольном экране размером m×n, разбитом на единичные клетки, светятся более (m – 1)(n – 1) клеток. Если в каком-либо квадрате 2×2 не светятся три клетки, то через некоторое время погаснет и четвёртая. Докажите, что тем не менее на экране всегда будет светиться хотя бы одна клетка.
Страница: 1 [Всего задач: 5] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|