|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что если существует окружность, касающаяся всех сторон выпуклого четырехугольника ABCD, и окружность, касающаяся продолжений всех его сторон, то диагонали такого четырехугольника перпендикулярны. В четырёхугольнике ABCD угол B равен 150°, угол C прямой, а стороны AB и CD равны. |
Страница: 1 2 >> [Всего задач: 6]
Один квадрат вписан в окружность, а другой квадрат описан около той же окружности так, что его вершины лежат на продолжениях сторон первого (см. рисунок). Найдите угол между сторонами этих квадратов.
Какое наибольшее количество граней n-угольной пирамиды может быть перпендикулярно основанию?
На плоскости даны неравнобедренный треугольник, его описанная окружность, и отмечен центр его вписанной окружности.
Докажите, что окружность, построенная на стороне AB треугольника ABC как на диаметре, касается его вписанной окружности тогда и только тогда, когда сторона AB равна радиусу вневписанной окружности, касающейся этой стороны.
Вписанная окружность неравнобедренного треугольника ABC касается сторон AB, BC и ABC в точках C1, A1 и B1 соответственно. Описанная окружность треугольника A1BC1 пересекает прямые B1A1 и B1C1 в точках A0 и C0 соответственно. Докажите, что ортоцентр H треугольника A0BC0, центр I вписанной окружности треугольника ABC и середина M стороны AC лежат на одной прямой.
Страница: 1 2 >> [Всего задач: 6] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|