ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 23]      



Задача 97893

Темы:   [ Признаки и свойства параллелограмма ]
[ Медиана делит площадь пополам ]
[ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Доказательство от противного ]
Сложность: 2
Классы: 8,9,10

Через вершины A и B треугольника ABC проведены две прямые, которые разбивают его на четыре фигуры (три треугольника и один четырёхугольник). Известно, что три из этих фигур имеют одинаковую площадь. Докажите, что одна из этих фигур – четырёхугольник.

Прислать комментарий     Решение

Задача 97894

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
[ Признаки делимости (прочее) ]
Сложность: 2+
Классы: 7,8,9

Автор: Фомин С.В.

Натуральное число n записано в десятичной системе счисления. Известно, что если какая-то цифра входит в эту запись, то n делится нацело на эту цифру (0 в записи не встречается). Какое максимальное число различных цифр может содержать эта запись?

Прислать комментарий     Решение

Задача 97880

 [Игра "кошки-мышки"]
Темы:   [ Симметричная стратегия ]
[ Шахматная раскраска ]
Сложность: 3
Классы: 7,8,9

Кошка ловит мышку в лабиринтах А, Б, В. Кошка ходит первой, начиная с узла, отмеченного буквой "К". Затем ходит мышка (из узла "М"), затем опять кошка и т. д. Из любого узла кошка и мышка ходят в любой соседний узел. Если в какой-то момент кошка и мышка оказываются в одном узле, кошка ест мышку. Сможет ли кошка поймать мышку в каждом из случаев А, Б, В?

Прислать комментарий     Решение

Задача 97886

Темы:   [ Неравенство треугольника (прочее) ]
[ Четырехугольник (неравенства) ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

Дан выпуклый четырёхугольник и точка M внутри него. Доказать, что сумма расстояний от точки M до вершин четырёхугольника меньше суммы попарных расстояний между вершинами четырёхугольника.

Прислать комментарий     Решение

Задача 97897

Темы:   [ Турниры и турнирные таблицы ]
[ Теория графов (прочее) ]
[ Четность и нечетность ]
Сложность: 3
Классы: 8,9,10

20 футбольных команд проводят первенство. В первый день все команды сыграли по одной игре. Во второй также все команды сыграли по одной игре.
Докажите, что после второго дня можно указать такие 10 команд, что никакие две из них не играли друг с другом.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .