ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

На клетчатой бумаге был нарисован лабиринт: квадрат 5×5 (внешняя стена) с выходом шириной в одну клетку, а также внутренние стенки, идущие по линиям сетки. На рисунке мы скрыли от вас все внутренние стенки. Начертите, как они могли располагаться, зная, что числа, стоящие в клетках, показывают наименьшее количество шагов, за которое можно было покинуть лабиринт, стартовав из этой клетки (шаг делается в соседнюю по стороне клетку, если они не разделены стенкой). Достаточно одного примера, пояснения не нужны.

Вниз   Решение


Каждая из двух сторон треугольника разделена на семь равных частей; соответствующие точки деления соединены отрезками.
Найдите эти отрезки, если третья сторона треугольника равна 28.

ВверхВниз   Решение


а) Может ли квадрат натурального числа оканчиваться на 2?

б) Можно ли, используя только цифры 2, 3, 7, 8 (возможно, по несколько раз), составить квадрат натурального числа?

ВверхВниз   Решение


Выразите площадь треугольника ABC через длину стороны BC и величины углов B и C.

ВверхВниз   Решение


Отметьте на доске 8×8 несколько клеток так, чтобы любая (в том числе и любая отмеченная) клетка граничила по стороне ровно с одной отмеченной клеткой.

Вверх   Решение

Задачи

Страница: << 102 103 104 105 106 107 108 >> [Всего задач: 7526]      



Задача 55686

Темы:   [ Окружности (прочее) ]
[ Параллельный перенос (прочее) ]
Сложность: 3-
Классы: 8,9

Докажите, что при параллельном переносе окружность переходит в окружность.

Прислать комментарий     Решение


Задача 87427

Тема:   [ Теорема о трех перпендикулярах ]
Сложность: 3-
Классы: 10,11


Высота прямоугольного треугольника ABC, опущенная на гипотенузу, равна 9.6. Из вершины C прямого угла восставлен к плоскости треугольника ABC перпендикуляр CM, причем CM = 28. Найдите расстояние от точки M до гипотенузы AB.

Прислать комментарий     Решение


Задача 102716

Тема:   [ Метод координат на плоскости ]
Сложность: 3-
Классы: 8,9

Составьте уравнение прямой, проходящей через точку M(- 3;2) параллельно прямой 2x - 3y + 4 = 0.

Прислать комментарий     Решение


Задача 103868

Темы:   [ Шахматная раскраска ]
[ Примеры и контрпримеры. Конструкции ]
[ Симметрия помогает решить задачу ]
Сложность: 3-
Классы: 6,7

Отметьте на доске 8×8 несколько клеток так, чтобы любая (в том числе и любая отмеченная) клетка граничила по стороне ровно с одной отмеченной клеткой.

Прислать комментарий     Решение


Задача 116354

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 3-
Классы: 8,9,10

В треугольнике ABC известны стороны BC = a, AC = b, AB = c и площадь S. Биссектрисы BL и AK пересекаются в точке O. Найдите площадь четырёхугольника CKOL.

Прислать комментарий     Решение

Страница: << 102 103 104 105 106 107 108 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .