Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

На доске написано число 12. В течение каждой минуты число либо умножают, либо делят либо на 2, либо на 3, и результат записывают на доску вместо исходного числа. Докажите, что число, которое будет написано на доске ровно через час, не будет равно 54.

Вниз   Решение


Город Нью-Васюки имеет форму квадрата со стороной 5 км. Улицы делят его на кварталы, являющиеся квадратами со стороной 200 м. Какую наибольшую площадь можно обойти, пройдя по улицам Нью-Васюков 10 км и вернувшись в исходную точку?

ВверхВниз   Решение


Отрезки, соединяющие основания высот остроугольного треугольника, образуют прямоугольный треугольник с гипотенузой, равной 10. Найдите радиус окружности, описанной около исходного треугольника.

ВверхВниз   Решение


Винни-Пух решил позавтракать. Он налил себе стакан чая и добавил сливок из большого кувшина. Но как только он перемешал сливки и чай, то понял, что хочет пить чай без сливок. Недолго думая, он вылил из стакана в кувшин столько же чая со сливками, сколько сначала взял оттуда сливок. Конечно же, при переливании чай от сливок не отделился, и у Винни-Пуха образовались две смеси чая и сливок – в стакане и в кувшине. Тогда Винни-Пух задумался: чего же получилось больше – чая в кувшине со сливками или сливок в стакане чая? А как думаете вы?

ВверхВниз   Решение


Даны точки  A(–1, 5)  и  B(3, –7).  Найдите расстояние от начала координат до середины отрезка AB.

ВверхВниз   Решение


Наибольший угол остроугольного треугольника в пять раз больше наименьшего.
Найдите углы этого треугольника, если известно, что все они выражаются целым числом градусов.

ВверхВниз   Решение


Через каждую грань куба провели плоскость. На сколько частей разделят пространство данные плоскости?

ВверхВниз   Решение


Игра со спичками. На столе лежит 37 спичек. Разрешается по очереди брать не более 5 спичек. Выигрывает тот, кто возьмет последнюю. Кто выигрывает при правильной игре?

ВверхВниз   Решение


Даны точки A(4;1), B(- 8;0) и C(0; - 6). Составьте уравнение прямой, на которой лежит медиана AM треугольника ABC.

ВверхВниз   Решение


Точки M и N – середины противоположных сторон BC и AD выпуклого четырёхугольника ABCD. Диагональ AC проходит через середину отрезка MN. Докажите, что треугольники ABC и ACD равновелики.

ВверхВниз   Решение


В треугольнике одна сторона в три раза меньше суммы двух других. Докажите, что против этой стороны лежит наименьший угол треугольника.

ВверхВниз   Решение


После проверки диктанта выяснилось, что учеников, которые ошиблись при написании слова «интеллект» в точности столько же, сколько написавших это слово правильно. Могло ли за этот диктант пятерок быть поставлено ровно на 15 меньше, чем остальных оценок?

Вверх   Решение

Задачи

Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 391]      



Задача 103012

Темы:   [ Задачи на смеси и концентрации ]
[ Инварианты ]
Сложность: 3-
Классы: 5,6,7,8,9

Винни-Пух решил позавтракать. Он налил себе стакан чая и добавил сливок из большого кувшина. Но как только он перемешал сливки и чай, то понял, что хочет пить чай без сливок. Недолго думая, он вылил из стакана в кувшин столько же чая со сливками, сколько сначала взял оттуда сливок. Конечно же, при переливании чай от сливок не отделился, и у Винни-Пуха образовались две смеси чая и сливок – в стакане и в кувшине. Тогда Винни-Пух задумался: чего же получилось больше – чая в кувшине со сливками или сливок в стакане чая? А как думаете вы?

Прислать комментарий     Решение

Задача 103881

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Текстовые задачи (прочее) ]
[ Уравнения в целых числах ]
Сложность: 3-
Классы: 6,7

Один мальчик 16 февраля 2003 года сказал: "Разность между числами прожитых мною (полных) месяцев и прожитых (полных) лет сегодня впервые стала равна 111". Когда он родился?

Прислать комментарий     Решение

Задача 103982

Тема:   [ Четность и нечетность ]
Сложность: 3-
Классы: 6,7,8

После проверки диктанта выяснилось, что учеников, которые ошиблись при написании слова «интеллект» в точности столько же, сколько написавших это слово правильно. Могло ли за этот диктант пятерок быть поставлено ровно на 15 меньше, чем остальных оценок?
Прислать комментарий     Решение


Задача 102818

Тема:   [ Симметричная стратегия ]
Сложность: 3
Классы: 7,8

Игра со спичками. На столе лежит 37 спичек. Разрешается по очереди брать не более 5 спичек. Выигрывает тот, кто возьмет последнюю. Кто выигрывает при правильной игре?
Прислать комментарий     Решение


Задача 30303

Темы:   [ Четность и нечетность ]
[ Процессы и операции ]
[ Инварианты ]
Сложность: 3
Классы: 6,7

На доске написаны числа 1, 2, 3, ..., 1984, 1985. Разрешается стереть с доски любые два числа и вместо них записать модуль их разности. В конце концов на доске останется одно число. Может ли оно равняться нулю?

Прислать комментарий     Решение

Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 391]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .