ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Доказать, что каждое из чисел последовательности 11, 111, 1111, ... не является квадратом натурального числа. Докажите, что на графике функции y = x³ можно отметить такую точку A, а на графике функции y = x³ + |x| + 1 – такую точку B, что расстояние AB не превышает 1/100. В возрастающей бесконечной последовательности натуральных чисел каждое число, начиная с 2002-го, является делителем суммы всех предыдущих чисел. Докажите, что в этой последовательности найдётся некоторое число, начиная с которого каждое число равно сумме всех предыдущих. Режем на равные части. Разрежьте фигуру на равные части (на две одинаковые по форме, и по площади части). В записи *1*2*4*8*16*32*64 = 27 вместо знаков ''*'' поставьте знаки ''+'' или ''-'' так, чтобы равенство стало верным.
Каждый зритель, купивший билет в первый ряд кинотеатра, занял одно из мест в первом ряду. Оказалось, что все места в первом ряду заняты, но каждый зритель сидит не на своём месте. Билетёр может менять местами соседей, если оба сидят не на своих местах. Всегда ли он может рассадить всех на свои места? На сторонах BC и CD ромба ABCD взяли точки P и Q соответственно так, что BP = CQ. В выпуклый четырёхугольник ABCD, у которого углы при вершинах B и D – прямые, вписан четырёхугольник с периметром P (его вершины лежат по одной на сторонах четырёхугольника ABCD). Вадик написал название своего родного города и все его циклические сдвиги (перестановки по кругу), получив таблицу 1. Затем, упорядочив эти ''слова'' по алфавиту, он составил таблицу 2 и выписал её последний столбец: ВКСАМО. Саша сделал то же самое с названием своего родного города и получил ''слово'' МТТЛАРАЕКИС. Что это за город, если его название начинается с буквы С?
У Миши есть 1000 одинаковых кубиков, у каждого из которых одна пара противоположных граней белая, вторая – синяя, третья – красная. Он собрал из них большой куб 10×10×10, прикладывая кубики друг к другу одноцветными гранями. Докажите, что у большого куба есть одноцветная грань. Целое число. Доказать, что если Пусть AA1, BB1, CC1 – высоты остроугольного треугольника ABC, OA, OB, OC – центры вписанных окружностей треугольников AB1C1, BC1A1, CA1B1 соответственно; TA, TB, TC – точки касания вписанной окружности треугольника ABC со сторонами BC, CA, AB соответственно. Докажите, что все стороны шестиугольника TAOCTBOATCOB равны. На тарелке лежат 9 разных кусочков сыра. Всегда ли можно разрезать один из них на две части так, чтобы полученные 10 кусочков делились бы на две порции равной массы по 5 кусочков в каждой? Тангенсы углов треугольника – целые числа. Чему они могут быть равны? |
Страница: 1 2 >> [Всего задач: 6]
Тангенсы углов треугольника – целые числа. Чему они могут быть равны?
Каждый зритель, купивший билет в первый ряд кинотеатра, занял одно из мест в первом ряду. Оказалось, что все места в первом ряду заняты, но каждый зритель сидит не на своём месте. Билетёр может менять местами соседей, если оба сидят не на своих местах. Всегда ли он может рассадить всех на свои места?
Докажите, что на графике функции y = x³ можно отметить такую точку A, а на графике функции y = x³ + |x| + 1 – такую точку B, что расстояние AB не превышает 1/100.
Пусть AA1, BB1, CC1 – высоты остроугольного треугольника ABC, OA, OB, OC – центры вписанных окружностей треугольников AB1C1, BC1A1, CA1B1 соответственно; TA, TB, TC – точки касания вписанной окружности треугольника ABC со сторонами BC, CA, AB соответственно. Докажите, что все стороны шестиугольника TAOCTBOATCOB равны.
В возрастающей бесконечной последовательности натуральных чисел каждое число, начиная с 2002-го, является делителем суммы всех предыдущих чисел. Докажите, что в этой последовательности найдётся некоторое число, начиная с которого каждое число равно сумме всех предыдущих.
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке