ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Для положительных чисел x, y, z выполнено равенство  x²/y + y²/z + z²/x = x²/z + y²/x + z²/y.  Докажите, что хотя бы два из чисел x, y, z равны между собой.

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 25]      



Задача 105157

Темы:   [ Подсчет двумя способами ]
[ Четность и нечетность ]
[ Многогранники и многоугольники (прочее) ]
Сложность: 3+
Классы: 10,11

По рёбрам выпуклого многогранника с 2003 вершинами проведена замкнутая ломаная, проходящая через каждую вершину ровно один раз. Докажите, что в каждой из частей, на которые эта ломаная делит поверхность многогранника, количество граней с нечётным числом сторон нечётно.

Прислать комментарий     Решение

Задача 105162

Темы:   [ Тождественные преобразования ]
[ Разложение на множители ]
[ Теорема Безу. Разложение на множители ]
Сложность: 3+
Классы: 9,10,11

Для положительных чисел x, y, z выполнено равенство  x²/y + y²/z + z²/x = x²/z + y²/x + z²/y.  Докажите, что хотя бы два из чисел x, y, z равны между собой.

Прислать комментарий     Решение

Задача 105152

Тема:   [ Задачи с неравенствами. Разбор случаев ]
Сложность: 3+
Классы: 7,8,9

В магазине три этажа, перемещаться между которыми можно только на лифте. Исследование посещаемости этажей магазина показало, что с начала рабочего дня и до закрытия магазина:
  1) из покупателей, входящих в лифт на втором этаже, половина едет на первый этаж, а половина – на третий;
  2) среди покупателей, выходящих из лифта, меньше трети делает это на третьем этаже.
На какой этаж покупатели чаще ездили с первого этажа, на второй или на третий?

Прислать комментарий     Решение

Задача 105146

Темы:   [ Геометрия на клетчатой бумаге ]
[ Раскраски ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 4-
Классы: 7,8,9

Можно ли покрасить некоторые клетки доски 8×8 так, чтобы в любом квадрате 3×3 было ровно 5 закрашенных клеток, а в каждом прямоугольнике 2×4 (вертикальном или горизонтальном) – ровно 4 закрашенные клетки?
Прислать комментарий     Решение


Задача 105147

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Вспомогательные равные треугольники ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4-
Классы: 7,8,9

В треугольнике ABC на сторонах AC и BC взяты такие точки X и Y, что  ∠ABX = ∠YAC,  ∠AYB = ∠BXCXC = YB.  Найдите углы треугольника ABC.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 25]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .