ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Существует ли натуральное число, делящееся на 1998, сумма цифр которого меньше 27?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 107857

Темы:   [ Линейные неравенства и системы неравенств ]
[ Уравнения в целых числах ]
[ Перебор случаев ]
Сложность: 3+
Классы: 7,8,9

Пусть a, b, c – такие целые неотрицательные числа, что   28a + 30b + 31c = 365.  Докажите, что  a + b + c = 12.

Прислать комментарий     Решение

Задача 107858

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Подсчет двумя способами ]
[ Ортогональная (прямоугольная) проекция ]
[ Разрезания на параллелограммы ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9,10

Квадрат со стороной 1 разрезали на прямоугольники, у каждого из которых отметили одну сторону.
Докажите, что сумма длин всех отмеченных сторон не может быть меньше 1.

Прислать комментарий     Решение

Задача 107859

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Покрытия ]
[ Арифметическая прогрессия ]
Сложность: 4-
Классы: 7,8,9

Автор: Агеев С.М.

Дорога протяженностью 1 км полностью освещена фонарями, причем каждый фонарь освещает отрезок дороги длиной 1 м. Какое наибольшее количество фонарей может быть на дороге, если известно, что после выключения любого фонаря дорога будет освещена уже не полностью?
Прислать комментарий     Решение


Задача 107860

Темы:   [ Признаки делимости на 3 и 9 ]
[ Десятичная система счисления ]
[ Признаки делимости (прочее) ]
[ Полуинварианты ]
Сложность: 4
Классы: 8,9,10

Существует ли натуральное число, делящееся на 1998, сумма цифр которого меньше 27?

Прислать комментарий     Решение

Задача 107861

Темы:   [ Правильный (равносторонний) треугольник ]
[ Поворот (прочее) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 5+
Классы: 8,9,10,11

Автор: Шень А.Х.

На пол положили правильный треугольник ABC, выпиленный из фанеры. В пол вбили три гвоздя (по одному вплотную к каждой стороне треугольника) так, что треугольник невозможно повернуть, не отрывая от пола. Первый гвоздь делит сторону AB в отношении 1 : 3, считая от вершины A, второй делит сторону BC в отношении 2 : 1, считая от вершины B. В каком отношении делит сторону AC третий гвоздь?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .