Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В окружность радиуса 2 вписан остроугольный треугольник A1A2A3. Докажите, что на дугах A1A2, A2A3, A3A1 можно отметить по одной точке (B1, B2, B3 соответственно) так, чтобы площадь шестиугольника A1B1A2B2A3B3 численно равнялась периметру треугольника A1A2A3.

Вниз   Решение


Автор: Назаров Ф.

Четырёхугольник ABCD вписанный, M – точка пересечения прямых AB и CD, N – точка пересечения прямых BC и AD. Известно, что  BM = DN.
Докажите, что  CM = CN.

ВверхВниз   Решение


На берегу круглого озера растут 6 сосен. Известно, что если взять такие два треугольника, что вершины одного совпадают с тремя из сосен, а вершины другого – с тремя другими, то в середине отрезка, соединяющего точки пересечения высот этих треугольников, на дне озера находится клад. Неизвестно только, как нужно разбить данные шесть точек на две тройки. Сколько раз придётся опуститься на дно озера, чтобы наверняка отыскать клад?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 108114  (#1)

Темы:   [ Четырехугольники (прочее) ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки и свойства параллелограмма ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 4-
Классы: 8,9

В плоскости выпуклого четырёхугольника ABCD расположена точка P. Проведены биссектрисы PK,PL, PM и PN треугольников APB, BPC, CPD и DPA соответственно.
  а) Найдите хотя бы одну такую точку P, для которой четырёхугольник KLMN – параллелограмм.
  б) Найдите все такие точки.

Прислать комментарий     Решение

Задача 98286  (#2)

Темы:   [ Целочисленные и целозначные многочлены ]
[ Рациональные и иррациональные числа ]
[ Четность и нечетность ]
Сложность: 4
Классы: 8,9,10,11

Дано n чисел, p – их произведение. Разность между p и каждым из этих чисел – нечётное число. Докажите, что все данные n чисел иррациональны.

Прислать комментарий     Решение

Задача 98287  (#3)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Медиана, проведенная к гипотенузе ]
[ Наибольший треугольник ]
Сложность: 4-
Классы: 10,11

Прямоугольник разбит на прямоугольные треугольники, граничащие друг с другом только по целым сторонам, так, что общая сторона двух треугольников всегда служит катетом одного и гипотенузой другого. Докажите, что отношение большей стороны прямоугольника к меньшей не менее 2.

Прислать комментарий     Решение

Задача 98288  (#4)

Темы:   [ Подсчет двумя способами ]
[ Процессы и операции ]
Сложность: 4-
Классы: 7,8,9

Автор: Шень А.Х.

Кресла для зрителей вдоль лыжной трассы занумерованы по порядку: 1, 2, 3, ..., 1000. Кассирша продала n билетов на все первые 100 мест, но n больше 100, так как на некоторые места она продала больше одного билета (при этом  n < 1000).  Зрители входят на трассу по одному.Каждый, подойдя к своему месту, занимает его, если оно свободно, если же занято, говорит "Ох!", идёт в сторону роста номеров до первого свободного места и занимает его. Каждый раз, обнаружив очередное место занятым, он говорит "Ох!". Докажите, что число "охов" не зависит от того, в каком порядке зрители выходят на трассу.

Прислать комментарий     Решение

Задача 108003  (#5)

Темы:   [ Центр масс ]
[ Ортоцентр и ортотреугольник ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9,10,11

На берегу круглого озера растут 6 сосен. Известно, что если взять такие два треугольника, что вершины одного совпадают с тремя из сосен, а вершины другого – с тремя другими, то в середине отрезка, соединяющего точки пересечения высот этих треугольников, на дне озера находится клад. Неизвестно только, как нужно разбить данные шесть точек на две тройки. Сколько раз придётся опуститься на дно озера, чтобы наверняка отыскать клад?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .