Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Две окружности пересекаются в точках A и B. В точке A к обеим проведены касательные, пересекающие окружности в точках M и N. Прямые BM и BN пересекают окружности еще раз в точках P и Q (P – на прямой BM, Q – на прямой BN). Докажите, что отрезки MP и NQ равны.

Вниз   Решение


Рассматривается шестиугольник, который является пересечением двух (не обязательно равных) правильных треугольников.
Докажите, что если параллельно перенести один из треугольников, то периметр пересечения (если оно остаётся шестиугольником), не меняется.

ВверхВниз   Решение


Найдите геометрическом место ортоцентров (точек пересечения высот) всевозможных треугольников, вписанных в данную окружность.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 97907  (#1)

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 3-
Классы: 7,8,9

Автор: Фольклор

Даны два двузначных числа – X и Y. Известно, что X вдвое больше Y, одна цифра числа Y равна сумме, а другая – разности цифр числа X.
Найти эти числа.

Прислать комментарий     Решение

Задача 108613  (#2)

Темы:   [ Диаметр, основные свойства ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9

Квадрат ABCD и окружность пересекаются в восьми точках так, что образуются четыре криволинейных треугольника:  AEF, BGH, CIJ, DKL  (EF, GH, IJ, KL – дуги окружности). Докажите, что
  а) сумма длин дуг EF и IJ равна сумме длин дуг GH и KL;
  б) сумма периметров криволинейных треугольников AEF и CIJ равна сумме периметров криволинейных треугольников BGH и DKL.

Прислать комментарий     Решение

Задача 97909  (#3)

Темы:   [ Симметричная стратегия ]
[ Разные задачи на разрезания ]
Сложность: 4
Классы: 7,8,9

Автор: Фомин С.В.

Двое играют в такую игру. Дана шоколадка с продольными и поперечными углублениями, по которым её можно ломать. Первый разламывает шоколадку по одной из линий, второй разламывает одну из частей, первый разламывает одну из трёх образовавшихся частей и т. д. Игра заканчивается в тот момент, когда в результате очередного хода возникнет долька, на которой уже нет углублений; сделавший этот ход выигрывает. На шоколадке 60 долек: имеется 5 продольных и 9 поперечных углублений. Кто выигрывает при правильной игре: начинающий или его партнёр?

Прислать комментарий     Решение

Задача 97910  (#4)

Темы:   [ Производящие функции ]
[ Классическая комбинаторика (прочее) ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 8,9,10

Автор: Анджанс А.

Берутся всевозможные непустые подмножества из множества чисел   1, 2, 3, ..., n.  Для каждого подмножества берётся величина, обратная к произведению всех его чисел. Найти сумму всех таких обратных величин.

Прислать комментарий     Решение

Задача 108021  (#5)

Темы:   [ Прямая Эйлера и окружность девяти точек ]
[ Гомотетия: построения и геометрические места точек ]
[ Ортоцентр и ортотреугольник ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9,10

Найдите геометрическом место ортоцентров (точек пересечения высот) всевозможных треугольников, вписанных в данную окружность.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .