Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

На доске записаны числа 1, 2, 3, ..., 1000. Двое по очереди стирают по одному числу. Игра заканчивается, когда на доске остаются два числа. Если их сумма делится на 3, то побеждает тот, кто делал первый ход, если нет – то его партнер. Кто из них выиграет при правильной игре?

Вниз   Решение


На плоскости дано множество из n9 точек. Для любых 9 его точек можно выбрать две окружности так, что все эти точки окажутся на выбранных окружностях. Докажите, что все n точек лежат на двух окружностях.

ВверхВниз   Решение


Докажите, что числа от 1 до 16 можно записать в строку, но нельзя записать по кругу так, чтобы сумма любых двух соседних чисел была квадратом натурального числа.

ВверхВниз   Решение


Правильная треугольная призма ABCA1B1C1 пересечена плоскостью, проходящей через середины рёбер AB , A1C1 и BB1 . Постройте сечение призмы, найдите площадь сечения и вычислите угол между плоскостью основания ABC и плоскостью сечения, если сторона основания равна 4, а высота призмы равна .

ВверхВниз   Решение


По каждой из двух пересекающихся прямых с постоянными скоростями, не меняя направления, ползёт по жуку. Известно, что проекции жуков на ось OX никогда не совпадают (ни в прошлом, ни в будущем). Докажите, что проекции жуков на ось OY обязательно совпадут или совпадали раньше.

ВверхВниз   Решение


Какое наибольшее число фишек можно поставить на клетки шахматной доски так, чтобы на каждой горизонтали, вертикали и диагонали (не только на главных) находилось чётное число фишек?

ВверхВниз   Решение


На шахматной доске 100×100 расставлено 100 не бьющих друг друга ферзей.
Докажите, что в каждом угловом квадрате 50×50 находится хотя бы один ферзь.

ВверхВниз   Решение


а) В городе Мехико для ограничения транспортного потока для каждой частной автомашины устанавливаются два дня недели, в которые она не может выезжать на улицы города. Семье требуется каждый день иметь в распоряжении не менее десяти машин. Каким наименьшим количеством машин может обойтись семья, если её члены могут сами выбирать запрещенные дни для своих автомобилей?

б) В Мехико для каждой частной автомашины устанавливается один день в неделю, в который она не может выезжать на улицы города. Состоятельная семья из десяти человек подкупила полицию, и для каждой машины они называют два дня, один из которых полиция выбирает в качестве невыездного дня. Какое наименьшее количество машин нужно купить семье, чтобы каждый день каждый член семьи мог самостоятельно ездить, если утверждение невыездных дней для автомобилей идёт последовательно?

ВверхВниз   Решение


Числа от 1 до 10 разбили на две группы так, что произведение чисел в первой группе нацело делится на произведение чисел во второй.
Какое наименьшее значение может быть у частного от деления первого произведения на второе?

ВверхВниз   Решение


Автор: Калинин А.

Докажите, что уравнение  x³ + y³ = 4(x²y + xy² + 1)  не имеет решений в целых числах.

ВверхВниз   Решение


Найдите наибольшее натуральное число, из которого вычеркиванием цифр нельзя получить число, кратное 11.

ВверхВниз   Решение


Автор: Калинин А.

Функция f(x) определена и удовлетворяет соотношению

(x-1)f()-f(x)=x

при всех x1 . Найдите все такие функции.

ВверхВниз   Решение


Автор: Сонкин М.

Пусть O – центр описанной окружности остроугольного треугольника ABC, SA, SB, SC – окружности с центром O, касающиеся сторон BC, CA и AB соответственно. Докажите, что сумма трёх углов: между касательными к SA, проведёнными из точки A, к SB – из точки B, и к SC – из точки C, равна 180°.

ВверхВниз   Решение


Докажите, что для любых действительных чисел a и b справедливо неравенство  a² + ab + b² ≥ 3(a + b – 1).

ВверхВниз   Решение


В параллелограмме ABCD точки M и N – середины сторон BC и CD соответственно. Могут ли лучи AM и AN делить угол BAD на три равные части?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 56]      



Задача 109958  (#98.4.8.1)

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Четность и нечетность ]
[ Перебор случаев ]
Сложность: 4-
Классы: 8,9,10

Существуют ли такие n-значные числа M и N, что все цифры M – чётные, все цифры N – нечётные, каждая цифра от 0 до 9 встречается в десятичной записи M или N хотя бы один раз и M делится на N?

Прислать комментарий     Решение

Задача 108107  (#98.4.8.2)

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

В параллелограмме ABCD точки M и N – середины сторон BC и CD соответственно. Могут ли лучи AM и AN делить угол BAD на три равные части?

Прислать комментарий     Решение

Задача 109960  (#98.4.8.3)

Темы:   [ Полуинварианты ]
[ Процессы и операции ]
[ Теория игр (прочее) ]
Сложность: 3
Классы: 8

В колоде 52 карты, по 13 каждой масти. Ваня вынимает из колоды по одной карте. Вынутые карты в колоду не возвращаются. Каждый раз перед тем, как вынуть карту, Ваня загадывает какую-нибудь масть. Докажите, что если Ваня каждый раз будет загадывать масть, карт которой в колоде осталось не меньше, чем карт любой другой масти, то загаданная масть совпадет с мастью вынутой карты не менее 13 раз.
Прислать комментарий     Решение


Задача 109961  (#98.4.8.4)

Темы:   [ Системы точек ]
[ Четыре точки, лежащие на одной окружности ]
[ Взаимное расположение двух окружностей ]
Сложность: 3+
Классы: 7,8,9

На плоскости дано множество из n9 точек. Для любых 9 его точек можно выбрать две окружности так, что все эти точки окажутся на выбранных окружностях. Докажите, что все n точек лежат на двух окружностях.
Прислать комментарий     Решение


Задача 109962  (#98.4.8.5)

Темы:   [ Числовые таблицы и их свойства ]
[ Перебор случаев ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9


Числа от 1 до 9 разместите в кружках фигуры (см. рис.) так, чтобы сумма четырёх чисел, находящихся в кружках-вершинах всех квадратов (их шесть), была постоянной.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .