Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Набор из 2003 положительных чисел таков, что для любых двух входящих в него чисел a и b ( a>b ) хотя бы одно из чисел a+b или a-b тоже входит в набор. Докажите, что если данные числа упорядочить по возрастанию, то разности между соседними числами окажутся одинаковыми.

Вниз   Решение


Пусть K, L, M, N – середины сторон AB, BC, CD, AD выпуклого четырёхугольника ABCD; отрезки KM и LN пересекаются в точке O.
Докажите, что   SAKON + SCLOM = SBKOL + SDNOM.

ВверхВниз   Решение


Автор: Фольклор

В выпуклом четырёхугольнике ABCD:  ∠ВАС = 20°,  ∠ВСА = 35°,  ∠ВDС = 40°,  ∠ВDА = 70°.
Найдите угол между диагоналями четырёхугольника.

ВверхВниз   Решение


На некоторых клетках шахматной доски лежит по конфете. Известно, что в каждой строке, в каждом столбце и в каждой диагонали (любой длины, даже состоящей из одной клетки) лежит чётное количество конфет (возможно, ни одной). Какое максимальное количество конфет может лежать на доске?

ВверхВниз   Решение


Числа от 1 до 37 записали в строку так, что сумма любых первых нескольких чисел делится на следующее за ними число.
Какое число стоит на третьем месте, если на первом месте написано число 37, а на втором – 1?

ВверхВниз   Решение


Автор: Фольклор

Найдите все простые числа p, q и r, для которых выполняется равенство:  p + q = (p – q)r.

ВверхВниз   Решение


Две окружности пересекаются в точках P и Q. Прямая пересекает эти окружности последовательно в точках A, B, C и D, как показано на рисунке.

Докажите, что  ∠APB = ∠CQD.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56]      



Задача 109963  (#98.4.8.6)

Темы:   [ Процессы и операции ]
[ Четность и нечетность ]
[ Полуинварианты ]
Сложность: 4-
Классы: 7,8,9

У нескольких крестьян есть 128 овец. Если у кого-то из них оказывается не менее половины всех овец, остальные сговариваются и раскулачивают его: каждый берёт себе столько овец, сколько у него уже есть. Если у двоих по 64 овцы, то раскулачивают кого-то одного из них. Произошло 7 раскулачиваний. Докажите, что все овцы собрались у одного крестьянина.

Прислать комментарий     Решение

Задача 108108  (#98.4.8.7)

Темы:   [ Признаки и свойства касательной ]
[ Признаки равенства прямоугольных треугольников ]
[ Вспомогательные равные треугольники ]
[ Концентрические окружности ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 7,8,9

Автор: Сонкин М.

Пусть O – центр описанной окружности остроугольного треугольника ABC, SA, SB, SC – окружности с центром O, касающиеся сторон BC, CA и AB соответственно. Докажите, что сумма трёх углов: между касательными к SA, проведёнными из точки A, к SB – из точки B, и к SC – из точки C, равна 180°.

Прислать комментарий     Решение

Задача 109965  (#98.4.8.8)

Темы:   [ Математическая логика (прочее) ]
[ Теория алгоритмов (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Объединение, пересечение и разность множеств ]
Сложность: 5-
Классы: 8,9,10

На выборах в городскую Думу каждый избиратель, если он приходит на выборы, отдает голос за себя (если он является кандидатом) и за тех кандидатов, которые являются его друзьями. Прогноз социологической службы мэрии считается хорошим, если в нем правильно предсказано количество голосов, поданных хотя бы за одного из кандидатов, и нехорошим в противном случае. Докажите, что при любом прогнозе избиратели могут так явиться на выборы, что этот прогноз окажется нехорошим.
Прислать комментарий     Решение


Задача 109950  (#98.4.9.1)

Темы:   [ Формула Герона ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Арифметическая прогрессия ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 3+
Классы: 8,9

Автор: Губин Я.

Длины сторон некоторого треугольника и диаметр вписанной в него окружности являются четырьмя последовательными членами арифметической прогрессии. Найдите все такие треугольники.
Прислать комментарий     Решение


Задача 108109  (#98.4.9.2)

Темы:   [ Пересекающиеся окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

Две окружности пересекаются в точках P и Q. Прямая пересекает эти окружности последовательно в точках A, B, C и D, как показано на рисунке.

Докажите, что  ∠APB = ∠CQD.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .