ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости дано k точек, расположенных так, что на каждой прямой, соединяющей две из этих точек, лежит по крайней мере ещё одна из них. Доказать, что все k точек лежат на одной прямой.

   Решение

Задачи

Страница: << 1 2 3 4 5 [Всего задач: 23]      



Задача 109014

Темы:   [ Наибольшая или наименьшая длина ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Построения с помощью вычислений ]
Сложность: 5
Классы: 8,9,10

Провести хорду данной окружности, параллельную данному диаметру, так, чтобы эта хорда и диаметр были основаниями трапеций с наибольшим периметром.
Прислать комментарий     Решение


Задача 109165

Темы:   [ Тела вращения ]
[ Поверхность круглых тел ]
[ Площадь и объем (задачи на экстремум) ]
Сложность: 5+
Классы: 10,11

В плоскости расположена прямая y и прямоугольный треугольник ABC с катетами AC=3; BC=4 . Вершина C находится на расстоянии 10 от прямой y . Угол между y и направлением катета AC равен α . Надо определить угол α , при котором поверхность, полученная вращением треугольника ABC вокруг прямой y , будет наименьшей.
Прислать комментарий     Решение


Задача 109007

Темы:   [ Системы точек ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 6-
Классы: 8,9,10,11

На плоскости дано k точек, расположенных так, что на каждой прямой, соединяющей две из этих точек, лежит по крайней мере ещё одна из них. Доказать, что все k точек лежат на одной прямой.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .