ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Автор: Фомин Д.

На плоскости дано N прямых  (N > 1),  никакие три из которых не пересекаются в одной точке и никакие две не параллельны. Докажите, что в частях, на которые эти прямые разбивают плоскость, можно расставить ненулевые целые числа, по модулю не превосходящие N, так, что суммы чисел по любую сторону от любой из данных прямых равны нулю.

Вниз   Решение


Решить в целых числах уравнение   xy/z + xz/y + yz/x = 3.

ВверхВниз   Решение


Сумма цифр в десятичной записи натурального числа n равна 100, а сумма цифр числа 44n равна 800. Чему равна сумма цифр числа 3n ?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 109691  (#99.5.10.1)

Тема:   [ Теория игр (прочее) ]
Сложность: 4
Классы: 7,8,9,10

Автор: Бахарев Ф.

На столе стоят три пустых банки из-под меда. Винни-Пух, Кролик и Пятачок по очереди кладут по одному ореху в одну из банок. Их порядковые номера до начала игры определяются жребием. При этом Винни может добавлять орех только в первую или вторую банку, Кролик – только во вторую или третью, а Пятачок – в первую или третью.
Тот, после чьего хода в какой-нибудь банке оказалось ровно 1999 орехов, проигрывает.
Докажите, что Винни-Пух и Пятачок могут, договорившись, играть так, чтобы Кролик проиграл.
Прислать комментарий     Решение


Задача 109692  (#99.5.10.2)

Темы:   [ Рекуррентные соотношения (прочее) ]
[ НОД и НОК. Взаимная простота ]
[ Числа Фибоначчи ]
[ Ограниченность, монотонность ]
[ Монотонность и ограниченность ]
Сложность: 4+
Классы: 9,10,11

Найдите все бесконечные ограниченные последовательности натуральных чисел a1, a2, a3, ..., для всех членов которых, начиная с третьего, выполнено

Прислать комментарий     Решение

Задача 108156  (#99.5.10.3)

Темы:   [ Вписанные и описанные окружности ]
[ Биссектриса делит дугу пополам ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Общая касательная к двум окружностям ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 5+
Классы: 8,9,10

Автор: Сонкин М.

Пусть окружность, вписанная в треугольник ABC , касается его сторон AB , BC и AC в точках K , L и M соответственно. К окружностям, вписанным в треугольники BKL , CLM и AKM проведены попарно общие внешние касательные, отличные от сторон треугольника ABC . Докажите, что эти касательные пересекаются в одной точке.
Прислать комментарий     Решение


Задача 109694  (#99.5.10.4)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Процессы и операции ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 6
Классы: 9,10,11

В квадрате n×n клеток бесконечной шахматной доски расположены n2 фишек, по одной фишке в каждой клетке. Ходом называется перепрыгивание любой фишкой через соседнюю по стороне фишку, непосредственно за которой следует свободная клетка. При этом фишка, через которую перепрыгнули, с доски снимается. Докажите, что позиция, в которой дальнейшие ходы невозможны, возникнет не ранее, чем через [] ходов.
Прислать комментарий     Решение


Задача 109695  (#99.5.10.5)

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 4+
Классы: 7,8,9,10

Сумма цифр в десятичной записи натурального числа n равна 100, а сумма цифр числа 44n равна 800. Чему равна сумма цифр числа 3n ?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .