Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

В выпуклом четырёхугольнике семь из восьми отрезков, соединяющих вершины с серединами противоположных сторон, равны.
Докажите, что все восемь отрезков равны.

Вниз   Решение


На доску последовательно выписываются числа  a1 = 1,  a2, a3, ... по следующим правилам: an+1 = an – 2,  если число  an – 2  – натуральное и еще не выписано на доску, в противном случае  an+1 = an + 3.  Докажите, что все квадраты натуральных чисел появятся в этой последовательности при прибавлении 3 к предыдущему числу.

ВверхВниз   Решение


На основании AD трапеции ABCD взята точка  E так, что  AE = BC.  Отрезки CA и CE пересекают диагональ BD в точках O и P соответственно.
Докажите, что если  BO = PD,  то  AD² = BC² + AD·BC.

ВверхВниз   Решение


Две окружности с центрами O1 и O2 пересекаются в точках A и B. Биссектриса угла O1AO2 повторно пересекает окружности в точках C и D.
Докажите, что центр O описанной окружности треугольника CBD равноудалён от точек O1 и O2.

ВверхВниз   Решение


Назовём натуральные числа похожими, если они записываются с помощью одного и того же набора цифр (например, для набора цифр 1, 1, 2 похожими будут числа 112, 121, 211). Докажите, что существуют такие три похожих 1995-значных числа, в записи которых нет нулей, что сумма двух из них равна третьему.

ВверхВниз   Решение


Сколько представлений допускает дробь    в виде суммы двух положительных дробей со знаменателями n и  n + 1?

ВверхВниз   Решение


Пусть x1, x2 – корни уравнения  x² + px + q = 0.  Выразите через p и q следующие выражения:
а)     б)     в)     г)  

ВверхВниз   Решение




Центры O1 , O2 и O3 трех непересекающихся окружностей одинакового радиуса расположены в вершинах треугольника. Из точек O1 , O2 и O3 проведены касательные к данным окружностям так, как показано на рисунке. Известно, что эти касательные, пересекаясь, образовали выпуклый шестиугольник, стороны которого через одну покрашены в красный и синий цвета. Докажите, что сумма длин красных отрезков равна сумме длин синих отрезков.

ВверхВниз   Решение


Среди 11 внешне одинаковых монет 10 настоящих, весящих по 20 г, и одна фальшивая, весящая 21 г. Имеются чашечные весы, которые оказываются в равновесии, если груз на правой их чашке ровно вдвое тяжелее, чем на левой. (Если груз на правой чашке меньше, чем удвоенный груз на левой, то перевешивает левая чашка, если больше, то правая.) Как за три взвешивания на этих весах найти фальшивую монету?

ВверхВниз   Решение


Различные числа a, b и c таковы, что уравнения  x² + ax + 1 = 0  и  x² + bx + c = 0  имеют общий действительный корень. Кроме того, общий действительный корень имеют уравнения  x² + x + a = 0  и  x² + cx + b = 0.  Найдите сумму  a + b + c.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 109723  (#00.5.9.1)

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Квадратные уравнения и системы уравнений ]
Сложность: 4-
Классы: 8,9

Различные числа a, b и c таковы, что уравнения  x² + ax + 1 = 0  и  x² + bx + c = 0  имеют общий действительный корень. Кроме того, общий действительный корень имеют уравнения  x² + x + a = 0  и  x² + cx + b = 0.  Найдите сумму  a + b + c.

Прислать комментарий     Решение

Задача 109724  (#00.5.9.2)

Темы:   [ НОД и НОК. Взаимная простота ]
[ Математическая логика (прочее) ]
[ Деление с остатком ]
Сложность: 4+
Классы: 8,9,10

Таня задумала натуральное число  X ≤ 100,  а Саша пытается его угадать. Он выбирает пару натуральных чисел M и N, меньших 100, и задаёт вопрос: "Чему равен наибольший общий делитель  X + M  и N?" Докажите, что Саша может угадать Танино число, задав семь таких вопросов.

Прислать комментарий     Решение

Задача 108145  (#00.5.9.3)

Темы:   [ Вписанный угол равен половине центрального ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные и описанные окружности ]
[ Свойства симметрий и осей симметрии ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4+
Классы: 8,9

Автор: Сонкин М.

Пусть O – центр описанной окружности ω остроугольного треугольника ABC. Окружность ω1 с центром K проходит через точки A, O и C и пересекает стороны AB и BC в точках M и N. Известно, что точки L и K симметричны относительно прямой MN. Докажите, что  BLAC.

Прислать комментарий     Решение

Задача 109726  (#00.5.9.4)

Темы:   [ Степень вершины ]
[ Обход графов ]
[ Принцип крайнего (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 4+
Классы: 8,9,10

В стране несколько городов, некоторые пары городов соединены дорогами. При этом из каждого города выходит хотя бы три дороги.
Докажите, что существует циклический маршрут, длина которого не делится на 3.

Прислать комментарий     Решение

Задача 109727  (#00.5.9.5)

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Индукция (прочее) ]
[ Деление с остатком ]
Сложность: 3+
Классы: 8,9,10

На доску последовательно выписываются числа  a1 = 1,  a2, a3, ... по следующим правилам: an+1 = an – 2,  если число  an – 2  – натуральное и еще не выписано на доску, в противном случае  an+1 = an + 3.  Докажите, что все квадраты натуральных чисел появятся в этой последовательности при прибавлении 3 к предыдущему числу.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .